

Kopplungsbeschreibung PROFINET

Kopplungsbeschreibung

PROFINET

für

IS1+ Feldstationen

Kopplungsbeschreibung PROFINET

Inhalt

	4
1 Systemübersicht	F
2 Inbetriebnahme	
2.1 Übersicht	
2.2 Unterstützte PROFINET Funktionen	
2.3 Systemvoraussetzungen	
2.4 Projektierungsgrenzen	
2.5 Konfiguration von IS1+ im PROFINET controller	8
2.6 Kompatibilität der neuen IS1+ IO-Module	g
2.7 PROFINET Netzwerk Topologie	10
2.7.1 MRP Ring (Media Redundancy Protocol)	
2.7.2 System Redundanz	
2.7.3 Shared Device	
2.7.4 Shared Input	
2.8 I/O-Modul Redundanz	
2.9 Adressierung und Protokollauswahl 9442 CPU	
2.9.1 DP/RS485 + SB Adresseinstellung	
2.9.2 Protokoll Auswahl	
2.9.3 IP Adresseinstellung	
2.9.3.1 PROFINET Adresse der IS1+ Feldstation	
2.9.3.3 IS1+ Webserver	
2.10 Systemanlauf	
2.11 PROFINET Funktionen	
2.12 RIO Profil Funktionen	
2.12.1 Mode Handling	
2.12.2 Signal Invertierung	
2.12.3 Skalierung von AI und AO Signalen	22
2.12.4 Failsafe Funktion	
2.12.4.1 Verhalten der Eingabesignale im Fehlerfall	
2.12.4.2 Verhalten der Ausgabesignale im Fehlerfall	25
2.13 Abbildung Modul Version	
3 Datenverkehr	26
3.1 Parametrierung	26
3.1.1 CPU Parameter	
3.1.2 IO-Modul Parameter	
3.1.2.1 AIM / AIMH 9461	
3.1.2.2 AUMH 9468	
3.1.2.3 UMH 9469	
3.1.2.4 TIMR 9480	
3.1.2.5 TIM mV 9481	
3.1.2.6 TIM 9482	
3.1.2.7 DIM (9470/3x im kompatiblen Mode)	30
3.1.2.8 DIOM 9470/3x, 9471/35, 9472/35 (IS1+)	
3.1.2.10 DOM	
3.2 Datenwortaufbau der I/O - Module	
3.2.1 I/O - Baugruppen analog	
3.2.1.1 Analog Format mit Status gemäß PI Spezifikation	
3.2.2 DIM, DIM+CF (9470/ 9471/ 9472/)	
3.2.3 DOM (9475/, 9477/, 9478/)	
3.3 HART Variablen	
3.3.1 Datenformat	
3.3.2 Auswahl der HART Variablen	54
3.4 HART Maintenance über IS1 DTM	55

Kopplungsbeschreibung PROFINET

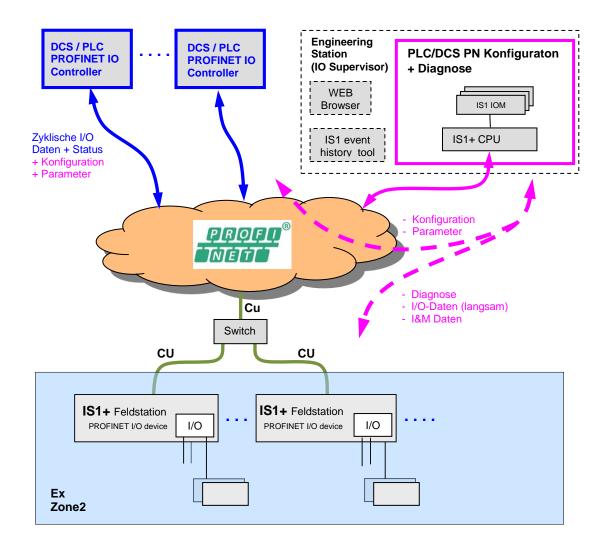
	3.5	Alarm- und Diagnosedaten	56
	3.6	I&M Identification & Maintenance Functions	57
	3.7	Webserver der IS1+ CPU	58
	3.8	NTP Zeitsynchronisation	60
	3.9	OPC UA Server	62
	3.10	LED- und LCD- Anzeige der 9441 CPU	62
		Online Verhalten der IS1+ Feldstation.	
	3.12	Übertragungszeit:	63
4	APL	_ Feldgerätebibliothek zur Anbindung an Leitsystem PCS7	64
		e der Äbkürzungen:	
6		sionsveränderungen:	
7		raturhinweise	
8	Sun	port Adresse	67

Kopplungsbeschreibung PROFINET

Historische Entwicklung der Remote I/O Technologie bei R. STAHL

Als einer der ersten Hersteller hat R. STAHL die Vorteile der Remote I/O Technologie für explosionsgefährdete Bereichen erkannt und entwickelt seit mittlerweile über 30 Jahren innovative Produkte und Lösungen. Im Fokus steht hierbei immer der Anwendernutzen: alle Kommunikations-, Versorgungs- und Ein-/Ausgabe-Baugruppen des Systems lassen sich im Betrieb im explosionsgefährdeten Bereich stecken und ziehen. Durch das eigensichere Systemdesign erfolgt die Installation fast wie im sicheren Bereich, es werden keine speziellen Ex d oder Ex p Gehäuse benötigt. Über Remote I/O lassen sich konventionelle und HART-fähige Feldgeräte einfach und kostensparend in moderne, digitale Netzwerkstrukturen einbinden. Umfangreiche Diagnosemöglichkeiten über einen separaten Servicebus oder den Prozessbus erlauben die Einbindung in moderne Plant Asset Management Systeme und erhöhen die Verfügbarkeit der Anlagen.

- R. STAHL bringt mit dem "Feldbus-System ICS MUX" als weltweit erster Hersteller ein eigensicheres Bussystem zur Erfassung und Ausgabe von Signalen im Ex-Bereich (Zone 1) auf den Markt. Die Ankopplung an Automatisierungssysteme erfolgt über ein in der Warte installiertes Regieendgerät. Die eigensichere Kommunikation zu den in Zone 1 installierten explosionsgeschützten Vorort- oder auch Feldstationen (VOS) erfolgt mittels eines einzigen Koaxialkabels.
- 1993 Auf der Basis von ICS MUX wird die Systemvariante "VOS 200" vorgestellt. Die "VOS 200" ist besser geeignet für kleinere Signalmengen oder dezentrale Automatisierungseinheiten, es ist kein Regieendgerät mehr erforderlich. Multi-Drop wird unterstützt und Kopplungen sind auch redundant möglich.
- "VOS 200" kann jetzt auch mit dem damals neuen PROFIBUS DP kommunizieren. Dafür entwickelte R. STAHL als erster eine eigensichere Ausführung, die heute mit ein paar Modifikationen als RS485-I.S. im PNO-Standard enthalten ist.
- 2000 Aus den Erfahrungen mit ICS MUX und VOS 200 entsteht ein vollkommen neues Remote I/O IS1. Das System ist deutlich flexibler und einfacher einsetzbar, dabei leistungsfähiger und extrem Kosten sparend. Im Laufe der Jahre entwickelt sich IS1 zum Marktführer in der Zone 1 und ist bis heute weltweit im Einsatz. IS1 unterstützt offene Busprotokolle wie PROFIBUS DP oder Modbus RTU und ist in unterschiedlichen Ausführungen für Zone 1, Zone 2 und sogar Division 1 und 2 verfügbar.
- 2009 IS1 wird um eine neue Kommunikationsbaugruppe für Ethernet erweitert. Damit ist IS1 das erste Remote I/O System, das in der Zone 1 an einem 100 Mbit/s Ethernet arbeitet. Als Kommunikationsmedium wird Lichtwellenleiter mit der Zündschutzart "op is" verwendet, unterstützte Protokolle sind Modbus TCP, EtherNet/IP und PROFINET.
- Die I/O-Ebene wird komplett modernisiert und als IS1+ auf den Markt gebracht. Die neuen multifunktionalen I/O-Module haben konfigurierbare Ein-/Ausgänge und eine innovative Diagnosefunktion, die potentielle Modul-Ausfälle bereits 12 Monate vorher meldet. IS1+ ist noch besser für extreme Umgebungsbedingungen von jetzt -40...+75 °C geeignet. Dabei sind die neuen IS1+ Module vollständig kompatibel zu ihren IS1 Vorgängern.
- 2018 Die neue Zone 2 Kopfbaugruppe bestehend aus CPU, Power Modul und Sockel macht IS1+ noch flexibler und vielfältiger einsetzbar. Die bisher unterstützten Protokolle PROFIBUS DP, Modbus TCP+RTU, EtherNet/IP und PROFINET werden jetzt alle von einer CPU unterstützt und sind vom Anwender auswählbar. Die neue Baugruppe hat die gleichen, vorausschauenden Diagnosefunktionen und den erweiterten Temperaturbereich von -40...75 °C wie die IS1+ Module.


Die nachfolgende Beschreibung zeigt die Systemeigenschaften des IS1+ Systems bei Ankopplung an ein Automatisierungssystem über Ethernet mit PROFINET Protokoll.

Kopplungsbeschreibung PROFINET

1 Systemübersicht

Als komplett explosionsgeschützt aufgebaute Einheit wird die IS1+ Feldstation typischerweise direkt im explosionsgefährdetem Bereich (Zone 1 oder Zone 2) installiert. Eine Installation im sicheren Bereich ist ebenfalls möglich. Das obige Bild zeigt eine Zone 2 Lösung.

Die IS1+ Feldstation verhält sich in einem solchen Netzwerk hierarchisch als PROFINET I/O device.

Die Konfiguration, Parametrierung und Diagnose der Feldstation und deren I/O Module erfolgt mittels GSDML Beschreibung in der Konfigurationssoftware des PROFINET Hosts.

In den IS1+ CPUs ist ein Webserver integriert, welcher zusätzliche Diagnosemöglichkeiten bietet.

Kopplungsbeschreibung PROFINET

2 Inbetriebnahme

2.1 Übersicht

Planung des gesamten PROFINET Netzwerkes:

- Welche Kontroller sind im Netz
- Welche PN Geräte sind im Netz
- Wahl der Netztopologie und Netzphysik (Switches, Repeater, Glasfaserstrecken ...)
- Eindeutige Vergabe der IP-Adressen oder Geräte Namen im Netzwerk.

Inbetriebnahme durchführen:

- Mechanische Montage der IS1+ Feldstation
- Mechanische Montage der PROFINET Switches
- Mechanische Montage aller weiteren Busteilnehmer
- Busverbindungen herstellen.
- Spannungsversorgung der IS1+ Feldstation herstellen.
- Spannungsversorgung der Switches und anderer Netzwerkkomponenten herstellen.
- IP-Adressen und Netzwerk Geräte Namen über die Konfigurationssoftware des controllers vergeben.
- IS1+ Feldstation sowie deren IO-Module mittels des GSDML Files und der Konfigurationssoftware des Controllers konfigurieren und parametrieren.
- PN controller programmieren.
- Netzwerk in Betrieb nehmen.
- Verbindung auf Ethernet mittels folgender Hilfsmittel prüfen
 - LED's an Ethernet Switches
 - Link LED's der CPU der IS1+ Feldstation
 - "Ping" ausführen. Eine CPU antwortet in jedem Zustand auf einen Ping.
- Kommunikation auf PROFINET mittels folgender Hilfsmittel prüfen
 - Diagnoseinformationen des controllers sowie dessen Netzwerk Management Software.
 - LED's an der CPU der IS1+ Feldstation
 - Webserver in IS1+ CPU
- E/A-Signale mittels folgender Hilfsmittel prüfen
 - Signal- und Diagnose Informationen des controllers.

Allgemeine Hinweise bezüglich PROFINET siehe auch folgende Dokumente der PNO:

PROFINET Planungsrichtlinie
 PROFINET Montagerichtlinie
 PROFINET Inbetriebnahmerichtlinie

PNO Doc. 8.061
PNO Doc. 8.071
PNO Doc. 8.081

Kopplungsbeschreibung PROFINET

2.2 Unterstützte PROFINET Funktionen

- PROFINET RT V2.3 einschließlich legacy mode
- Device gemäß Conformance Class B
- Application Class "High Availability" mit Focus auf System Redundanz und Dynamic Reconfiguration.
- MRP Client Medien Redundanz Protokoll (Ring)
- System Redundanz S2 Support von redundanten PLC/DCS
- *1)
- Shared Device Verteilung von Submodulen auf verschiedene Steuerungen
- *1)
- Shared Input Mehrfachzugriff auf Eingänge von verschiedenen Steuerungen
- *1)

- 1024 Byte I/O Daten (inclusive IOPS/IOCS)
- Max 16 physikalische Steckplätze für I/O Module
- 4 ms Minimum Device Interval
- I&M 0 ... 3 (Identification and Maintenance Data)
- MIB Unterstützung (IF MIB, LLDP MIB, LLDP EXT MIB, MAU MIB, PNIO MIB)
 Topologie Prüfung (neighbor MRP data, peer partner port)
- SNMP V2 Topologie Erkennung und Messung der Kabellängen (Simple Network Management Protocol)
- NumberOfAR=3 -> max. Anzahl von Application Relationships (ARs) für z.B. Shared Device, System Redundanz und Supervisor AR (Engineering Tool).
- *1) **Achtung!** Shared Device und Shared Input können nicht in Kombination mit System Redundanz S2 verwendet werden!

2.3 Systemvoraussetzungen

Hardwarevoraussetzungen:

- IS1 Feldstation mit CPU 9441/12-00-00.
 Einzelsockel 9492/12-11-31 oder redundanter Sockel 9492/12-11-32
- IS1+ Feldstation mit CPU 9442/35-10-00, Sockel 9496/.. und Power Modul PM 9445/..

Softwarevoraussetzungen:

IO-Modul	IO-Modul	9441	9441 CPU		CPU
10-Iviodui	Firmware	Firmware	GSDML	Firmware	GSDML
IS1 IOM	ab 02-00	ab V51-05	ab GSDML-V2.3-	ab V1.0.24	ab GSDML-V2.34-
IS1+ IOM (94xx/3x)	ab 03-01	ab v31-03	Stahl-RIO- 20140206.xml	au v 1.0.24	Stahl-RIO9442- 20220303.xml

2.4 Projektierungsgrenzen

Für die Projektierung einer IS1+ Feldstation gelten die allgemeinen Regeln gemäß Betriebsanleitung IS1+.

Maximal 1024 Byte zyklische Input- + Output Daten + Submodul Status IOPS/IOCS sind zulässig. Das begrenzt mögliche IO-Modul Projektierungen z. B. bei 16 IO-Modulen mit vielen zusätzlichen Submodulen für HART und CF.

Die Grenzen und Anforderungen der verwendeten PROFINET Controller sowie Netzwerk Komponenten sind bei der Projektierung ebenfalls zu beachten.

Kopplungsbeschreibung PROFINET

2.5 Konfiguration von IS1+ im PROFINET controller

Das exakte Vorgehen der Projektierung entnehmen Sie bitte der Dokumentation des Controllers. Durch die weitgehende Normung von PROFINET erfolgt die Projektierung von PROFINET Geräten auch bei Produkten unterschiedlicher Hersteller in sehr ähnlicher Form. Für IS1+ Feldstation sind Gerätebeschreibungen in Form von GSDML Dateien verfügbar. In diesen Dateien sind alle für den Controller wichtigen Informationen über Kommunikationsverhalten, Signale und Parameter der IS1+ Feldstation enthalten. Die GSDML Datei wird von der Konfigurationssoftware des Controllers eingelesen. Aus der GSDML Datei entnimmt der Konfigurator des Controllers die Information über die in einer IS1+ Feldstation möglichen Modultypen und deren Eigenschaften. Die nachfolgende Tabelle zeigt die unterstützten IO-Modul Typen:

Typ Nummer	Kurzbezeichnung	Submodul1	Submodul2	Module ID	Generation
9460/12-08-11	AIM 8		-	IDM_AIM_03	
9461/12-08-11	AIMH 8	8 AI		IDM_AIM_05	
9461/12-08-21	AIMH 8	8 HV		IDM_AIM_06	
9461/15-08-12	AIMH 8	1		IDM_AIM_07	IS1
9465/12-08-11	AOM 8		-	IDM_AOM_09	
9466/12-08-11	AOMH 8	8 AO	0.1117	IDM_AOM_11	
9466/15-08-12	AOMH 8		8 HV	IDM_AOM_12	
9468/3x-08-xx	AUMH 8	8AI + 8AO	8 HV	IDM_AUIM_43	104 :
9469/35-08-xx	UMH 8 Exn *1)	8AI + 8AO	8 HV	IDM_UIM_50	- IS1+
9470/22-16-11	DIM 16	16 DI	2.05	IDM_DIM_13	101
9470/25-16-12	DIM 16	16 DI	2 CF	IDM_DIM_14	- IS1
9470/3x-16-xx	DIOM 16	16 DI+16 DO	8 CF	IDM_DIOM_IM_44	IS1+
9471/15-16-12	DIM 16	16 DI	2 CF	IDM_DIM_17	IS1
9471/35-16-xx	DIOM 16 Exn *1)	16 DI+16 DO	8 CF	IDM_DIOM_IM_48	104 :
9472/35-16-xx	DIOM 16 24V Exn *1)	16 DI+16 DO	8 CF	IDM_DIOM_IM_49	- IS1+
9475/12-04-11	DOM 4			IDM_DOM_18	
9475/12-04-21	DOM 4	4 DO		IDM_DOM_19	
9475/12-04-31	DOM 4			IDM_DOM_20	
9475/12-08-41	DOM 8			IDM_DOM_22	
9475/12-08-51	DOM 8	8 DO		IDM_DOM_23	IS1
9475/12-08-61	DOM 8			IDM_DOM_24	
9475/22-04-21	DOM 4	4 DO		IDM_DOM_36	
9475/22-08-51	DOM 8	0 DO		IDM_DOM_32	
9475/22-08-61	DOM 8	8 DO		IDM_DOM_33	
9475/3x-04-xx	DOM 4	4 DO		IDM_DOM_45	IS1+
9475/3x-08-xx	DOM 8	8 DO	-	IDM_DOM_46	151+
9477/12-08-12	DOM 8 60V Rel Z1	8 DO		IDM_DOM_34	
9477/12-06-12	DOM 6 250VRel Z1	6 DO		IDM_DOM_35	IS1
9477/15-08-12	DOM 8 Rel Z2	8 DO		IDM_DOM_30	
9477/34-04-11	DOMR 4 250V Rel Z1	4 DO			IS1+
9477/35-08-11	DOMR 8 250V Rel Z2				131+
9478/22-08-51	DOMV 8 OD	8 DO		IDM_DOM_42	IS1
9478/32-08-02	DOMV 8 OD				IS1+
9480/12-08-11	TIM 8 R	8 TI		IDM_TIM_26	104
9481/12-08-11	TIM 8 mV	8 TI		IDM_TIM_28	- IS1
9482/3x-08-xx	TIM 8	8 TI		IDM_TIM_47	IS1+

^{*1)} Exn IO-Module sind nur in Ex Zone 2 zulässig und werden nur mit der 9442 CPU unterstützt. Im kompatiblen Mode können diese IOM auch mit 9441 CPUs betrieben werden, siehe Kompatibilität der neuen IS1+ IO-Module.

Kopplungsbeschreibung PROFINET

2.6 Kompatibilität der neuen IS1+ IO-Module

Neue IS1+ IO-Module können in bestehenden Anlagen bisherige IS1 IO-Module vollständig funktionskompatibel ersetzen. Eine Änderung der Projektierung ist in diesem Fall nicht erforderlich.

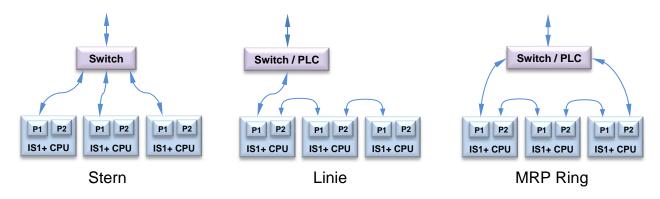
Erkennen die IS1+ IO-Module eine zulässige Projektierung der bisherigen IS1 IO-Module, so schalten diese in einen kompatiblen Mode und verhalten sich wie das bisher projektierte IO-Modul.

Sollen Zusatzfunktionen der IS1+ IO-Module genutzt werden, welche über die Funktionen der bisherigen IO-Module hinausgehen, sind die neuen IS1+ IO-Module gemäß Ihrer neuen Typnummer zu projektieren.

Übersicht der kompatiblen IO-Module:

IS1 IO-Modul		Kompatibles IS1+ IO-Modul	Bemerkung
9460/12-08-11	AIM 8		-
9461/12-08-11	AIMILLO		-
9461/12-08-21	AIMH 8	9468/32-08-11 AUMH Zone 1 9468/33-08-10 AUMH Zone 2	9164 zusätzlich erforderlich
9465/12-08-11	AOM 8	0 100/00 00 10 /\G\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-
9466/12-08-11	AOMH 8		-
9461/15-08-12	AIMH 8 Exn	0400/25 00 20/ 110411 520	-
9466/15-08-12	AOMH 8 Exn	9469/35-08-xx UMH Exn	-
9470/22-16-11	DIM 16	9470/32-16-11 DIOM Zone 1	-
9475/12-08-41	DOM 8	9470/33-16-10 DIOM Zone 2	Für Low Power Ventile
9470/25-16-12	DIM 16 Nam Exn	9471/35-16-xx DIOM Zone 2 Exn	-
9471/15-16-12	DIM 16 24V Exn	9472/35-16-xx DIOM 24V Exn	-
9471/10-16-11	DIM 16 24V	(ab IOM Firmware V03-06)	-
9475/12-04-11		9475/32-04-12 DOM Zone 1	-
9475/12-04-21	DOM 4	9475/32-04-22 DOM Zone 1	-
9475/12-04-31		-	Entfällt
9475/12-08-41		siehe oben 9470/3x DIOM	-
9475/12-08-51	DOM 8	9475/32-08-52 DOM Zone 1 9475/33-08-50 DOM Zone 2	-
9475/12-08-61		9475/32-08-62 DOM Zone 1 9475/33-08-60 DOM Zone 2	-
9475/22-04-21	DOM 4 OD	9475/32-04-22 DOM Zone 1	-
9475/22-08-51	DOM 8 OD	9475/32-08-52 DOM Zone 1	-
9475/22-08-61	DOM 6 OD	9475/32-08-62 DOM Zone 1	-
9477/12-08-12	DOM 8 60V Rel Z1	0.477/0.4.0.4.44.19.0145.4.07.0145.4.7.1	Nur die Kanäle 0 bis 3 können
9477/12-06-12	DOM 6 250V Rel Z1	9477/34-04-11 DOMR 4 250V Rel Z1	kompatibel zu den bisherigen IS1 IOM betrieben werden
9477/15-08-12	DOM 8 Rel Z2	9477/35-08-11 DOMR 8 250V Rel Z2	
9478/22-08-51	DOMV8 OD Exi1	9478/32-08-02 DOMV 8 OD	
9480/12-08-11	TIM R	0.400/05/ 00 50/ 07/104	-
9481/12-08-11	TIM mV	9482/3x-08-xx 8TIM	-

Hinweis: Der real gesteckte Typ wird über I&M gemeldet. Bei IO-Modulen im kompatiblen Mode wird der gesteckte Typ daher nur in der online Diagnose angezeigt. Offline wird der konfigurierte Typ angezeigt.



Kopplungsbeschreibung PROFINET

2.7 PROFINET Netzwerk Topologie

Die IS1+ 9442 CPU verfügt über zwei Ethernet Ports (Anschüsse X2, P1 sowie X2, P2) welche über einen Ethernet Switch intern verbunden sind. Damit ist es möglich, Ethernet Stern-, Linien- (Daisy Chain) sowie MRP Ring topologien aufzubauen (Media Redundancy Protocol). Die IS1+ 9441 CPU verfügt über nur einen Ethernet Port. Dadurch werden hier nur Stern Topologien unterstützt.

Zum Aufbau von Ringstrukturen sind MRP fähige Komponenten gemäß PROFINET Spezifikation zu verwenden und geeignet zu konfigurieren.

Maintenance Hinweis: Während einem Software Update einer 9442 CPU werden der interne Switch und der Port P2 der 9442 CPU deaktiviert. Über Port P2 nachgeschaltete Netzwerk Teilnehmer sind in dieser Betriebsphase daher nicht erreichbar.

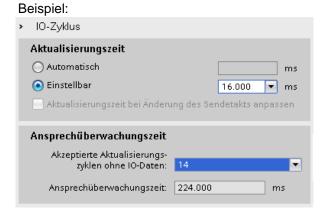
2.7.1 MRP Ring (Media Redundancy Protocol)

Voraussetzungen für den störungsfreien Betrieb mit dem Medienredundanzverfahren MRP

- Bei MRP Ringtopologien ist die zulässige Geräte Anzahl je Ring begrenzt (z. B. typisch 50 Geräte).
 Details siehe Betriebsanleitung des Ring Managers.
 Eine Überschreitung der Geräteanzahl kann zum Ausfall des Datenverkehrs führen.
- Der Ring, in dem Sie MRP einsetzen wollen, darf nur aus Geräten bestehen, die diese Funktion unterstützen.
- Alle Geräte müssen über ihre Ringports miteinander verbunden sein.
- Bei allen Geräten im Ring muss "MRP" aktiviert sein alle Geräte als "MRP Client" außer einem Gerät mit der Rolle "Manager".
- Alternativ k\u00f6nnen mehrere Ger\u00e4te im Ring die Rolle "Manager (Auto)" besitzen. Die Ger\u00e4te mit der Rolle "Manager (Auto)" handeln dann unter sich aus, wer die Aufgabe des Redundanzmanagers \u00fcbernimmt. In diesem Fall darf kein Ger\u00e4t die Rolle "Manager" besitzen.
- Die IS1+ 9442 CPU besitzt die Rolle "MRP Client".
- Rekonfigurationszeit eines MRP Rings nach Fehler: typ. 200 ms
- MRP gemäß Norm IEC 62439-2

Kopplungsbeschreibung PROFINET

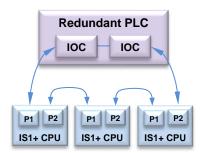
Regel zum Laden der Geräte einer MRP-Domain


- Beim Laden von Geräten einer MRP-Domain (eines Ringes) kann es zu kreisenden Frames und damit zum Ausfall des Netzwerks kommen, wenn eine ungültige MRP-Projektierung vorliegt.
- Beispiel: Sie ändern die MRP-Rollen von mehreren Geräten und laden nacheinander die Konfiguration in die beteiligten Geräte. Es können Konfigurationen entstehen, die den oben genannten Regeln widersprechen, z. B. könnten Geräte mit der Rolle "Manager" und "Manager (auto)" zu einem Zeitpunkt gleichzeitig im Ring existieren.
- Damit eine ungültige MRP-Konfiguration nicht zu einem Ausfall des Netzwerks führt, lösen Sie vor dem Laden den Ring.
- Gehen Sie folgendermaßen vor:
 - 1. Lösen Sie den Ring.
 - 2. Laden Sie die fehlerfreie und konsistente MRP-Projektierung aus Ihrem Projekt in alle beteiligten Geräte und stellen Sie sicher, dass sich die Geräte im Datenaustausch befinden.
 - 3. Schließen Sie den Ring.

MRP und Realtime (RT)

RT-Betrieb ist bei der Verwendung von MRP möglich. Während der Rekonfigurationszeit des Rings nach einem Fehler werden die I/O Daten eingefroren.

Achtung! Wählen Sie die Ansprechüberwachungszeit der IO-Devices ausreichend groß. Typisch >= 200 ms.


Die RT-Kommunikation wird unterbrochen (Stationsausfall), wenn die Rekonfigurationszeit des Rings größer als die gewählte Ansprechüberwachungszeit der IO-Devices ist.

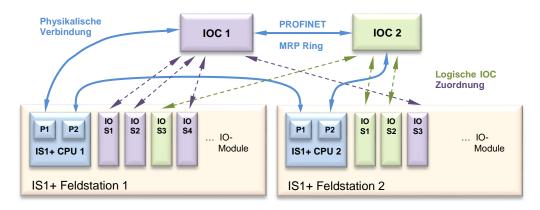
2.7.2 System Redundanz

Single Network Access Point NAP mit zwei IO Controllern - S2

Die IS1+ 9442 CPU unterstützt die PROFINET S2 Systemredundanz gemäß PNO Spez. (PNO Doc. 7.122). Redundante IO Controller, welche diese Funktion unterstützen sind für Projektierung und Betrieb erforderlich.

Beispiel für die S2 Systemredundanz:

- Redundant IO Controller
- Single IS1+ CPUs (NAP)
- MRP Ring



Kopplungsbeschreibung PROFINET

2.7.3 Shared Device

Die IS1+ 9442 CPU unterstützt die PROFINET Funktion 'Shared Device' welche es ermöglicht, die Module bzw. Submodule eines IO-Devices zwischen verschiedenen IO-Controllern (IOC) logisch aufzuteilen. Jedes Submodul eines Shared Devices wird exklusiv einem IO-Controller zugeordnet.

Die Funktion 'Shared Device' muss auch von den verwendeten IO-Controllern unterstützt werden um diese verwenden zu können. Bei der Projektierung von IO-Controllern mit Shared Devices sind einige Besonderheiten zu beachten. Diese entnehmen Sie bitte der Betriebsanleitung der IO-Controller.

2.7.4 Shared Input

Die IS1+ 9442 CPU unterstützt die PROFINET Funktion 'Shared Input' Mehrere IO-Controller lesen die gleichen Input Daten in einem IO-Device. Details entnehmen Sie bitte der Betriebsanleitung der IO-Controller.

Achtung!

Shared Device und Shared Input können nicht in Kombination mit System Redundanz S2 verwendet werden!

Kopplungsbeschreibung PROFINET

2.8 I/O-Modul Redundanz

Zur Erhöhung der Verfügbarkeit können zwei I/O-Module gleichen Typs mit einem 9491 Termination Board sowie zugehörigen Verbindungskabeln zu einem redundanten I/O-Modul Paar zusammengeschaltet werden. Details zur Projektierung und Verdrahtung von redundanten I/O Modulen siehe: Betriebsanleitung 9491 Termination Board.

I/O Redundanz wird für folgende I/O Modul Typen unterstützt:

9468/3x-08-xx ab HW Rev. B in Vorbereitung

• 9469/35-08-xx

• 9471/35-16-xx in Vorbereitung

9472/35-16-xx

9475/3x-0x-xx in Vorbereitung

Systemvorraussetzungen für I/O Modul Redundanz:

IS1+ 9442 CPU Firmware ab V1.0.24

- Zwei I/O Module mit identischer Typ Nummer und Firmware ab V04-xx
- Sensor/Aktor Verdrahtung über 9491 Termination Boards und Verbindungs Kabel
- PROFINET ab: GSDML-V2.34-Stahl-RIO9442-20210722.xml
- Optional: I.S.Wizard und IS1 DTM Hardware Datenbank HWDB ab V3.0.4.22

Projektierung:

Zur Bildung eines redundanten I/O-Modul Paares sind zwei I/O-Module gleichen Typs auf zwei aufeinander folgenen Steckplätzen zu projektieren. Das Modul mit der kleineren Steckplatzadresse (linkes IOM) wird regulär in einer beliegigen Betriebsart mit I/O-Daten projektiert. Mit den I/O-Daten dieses Moduls wird die Applikationssoftware in der SPS verknüpft.

Das Modul mit der größeren Steckplatzadresse (rechtes IOM) ist mit identischer Typ Nummer sowie dem Zusatz 'Redundant' zu projektieren. Dieser Modulbeschreiber verwendet keine I/O-Daten und keine eigenen Modulparameter.

Wird von der IS1 CPU die Projektierung eines redundanten Paares erkannt, so werden die Parameter des linken IO-Moduls im IS1 System automatisch zum rechten I/O-Modul kopiert. Die Prozess- Status- und Signaldiagnose Daten beider Module eines redundanten Paares werden immer über den Modulbeschreiber des linken IO-Moduls mit der Applikation ausgetauscht. Das projektierte linke Modul ist somit Stellvertreter für das I/O-Modul Paar.

Beispiel:

Modul Nr. (Steckplatz)	Bestellnummer	Input Bytes	Output Bytes	Redundantes I/O-Modul Paar	
1	9468/3x-08-xx 8AIH/8AOH +4HV	34	16	-	
2	9469/35-08-xx 6IH+2OH Exn	14	4	-0	
3	9469/35-08-xx Redundant	0	0	Ja	
4	9470/3x-16-xx DI/DO 16+2CF	8	4	-	
5	9472/35-16-xx DIM 16 24V Exn	4	0		
7	9472/35-16-xx Redundant	0	0	Ja	
8	(Leermodul)	0	0	-	
9	9475/3x-08-xx DOM 8	2	1	-	
10				-	

Kopplungsbeschreibung PROFINET

Signal Status:

Der Status ist 'OK', wenn das Signal noch lebt (mindestens ein IO-Modul eines redundanten Paares liefert ein gültiges Signal) und ist 'Bad' bei Signal Ausfall (keines der beiden IO-Module liefert ein gültiges Signal).

Signal Fehler:

Signalfehler (Leitungsunterbrechung LU/ Kurzschluss KS) werden in der Signaldiagnose am linken IO-Modul angezeigt, unabhängig von welchem IO-Modul der Fehler detektiert wurde, da dieses IO-Modul der Repräsentant des Paares ist.

An den Signalfehler LEDs der IO-Module ist erkennbar, ob Signalfehler nur vom linken, rechten oder von beiden IO-Modulen eines Paares detektiert wurden.

Modul Fehler:

Modulfehler wie z. B. IOM meldet sich nicht, Wartungsbedarf Modul, Fehler Steckplatz Adressierung, Übertemperatur, HW-Fehler, ... werden wie bisher am betroffenen IO-Modul Slot angezeigt.

Kopplungsbeschreibung PROFINET

2.9 Adressierung und Protokollauswahl 9442 CPU

2.9.1 DP/RS485 + SB Adresseinstellung

Für die Protokolle PROFIBUS sowie STAHL Servicebus über USB/RS485 wird von der 9442 CPU eine gemeinsame Stationsadresse verwendet, welche über zwei Drehschalter S2, S3 auf dem ersten IS1+ Sockel (Bank 0) einstellbar ist.

Die Schalter befinden sich unter der linken CPU.

Dies hat den Vorteil, dass die Schalter während des Betriebs nicht versehentlich verändert werden können. Eine Übernahme von veränderten Schalterstellungen erfolgt immer erst nach CPU Boot.

Adressbereich 0 – 127 (0 – 99 bei Sockel mit HW-Rev. A)

Eingestellte Adresse = $S2 \times 10 + S3$

Hex Switch: A = 10, B = 11, ...

Beispiel: Adresse = 113 S2 = B (11), S3 = 3 (11 x 10 + 3 = 113)

Bei Adresseinstellung > 127 ist der Teilnehmer am Bus nicht erreichbar, M/S LED an CPU blinkt sowie Fehlermeldung in Event History in Webserver.

2.9.2 Protokoll Auswahl

Das zu verwendende AS Protokoll wird bei der 9442 CPU per Drehschalter S1 im Sockel fest gewählt. Damit bleibt die AS Protokoll Auswahl und Adresse bei CPU Tausch erhalten. Nach Veränderungen der Protokoll Auswahl sind zum Protokoll passende Konfigurations- und Parameter Daten zu erstellen und in die IS1+ Feldstation zu laden.

AS-Protokoll	Schalter Stellung S1
Reserved	0
PROFIBUS PNO Red.	1
PROFIBUS Stahl Red. Addr. Offs. 1	2
PROFIBUS Stahl Red. Addr. Offs. 0	3
PROFINET	4
Reserved	5
Modbus TCP	6
EtherNet/IP	7
Reserved	8
Reserved	>9

2.9.3 IP Adresseinstellung

Die 9442 IS1+ CPU verwendet für die Ethernet Kommunikation zwei separate IP Adressen:

- IP-AS: PROFINET Realtime Bus zu Automatisierungs-System
- IP-SB: Service Bus Funktionen: Web-Server, IS1-DTM, HART, Standard TCP Traffic, SW-Update

Durch diese Trennung der IP Adressen wird eine verbesserte Unabhängigkeit der verschiedenen Datenströme erreicht auch wenn beide Datenströme über dieselben Ethernet Ports ablaufen.

Eine Veränderung der IP-Adressen ist während aktivem Data Exchange zum Automatisieungsgerät gesperrt.

Achtung! IP-AS und IP-SB Adressen sowie Gerätenamen einer CPU müssen wie alle Adressen eines Ethernet Netzwerkes einmalig und eindeutig sein!

Kopplungsbeschreibung PROFINET

Es ist zu beachten, dass auch die IP-Adressinformationen im Sockelspeicher der IS1+ CPU gespeichert werden. Bei Austausch von CPUs bleiben Konfigurations- und Adressinformationen einer IS1+ Feldstation daher erhalten.

2.9.3.1 PROFINET Adresse der IS1+ Feldstation

Für die Adressierung einer IS1+ Feldstation sind folgende Angaben notwendig:

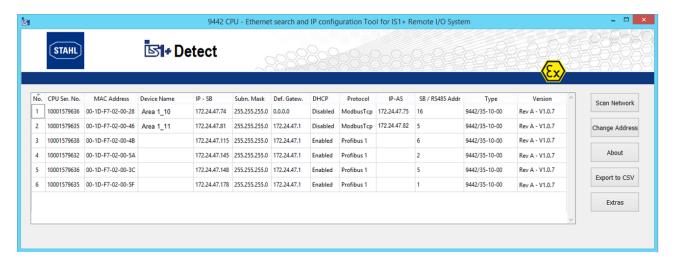
- Gerätename
- IP Adresse
- SubNet Maske
- optional: Gateway

Die Einstellung der Adressen einer IS1+ Feldstation kann erfolgen über:

- Bevorzugt bei Betrieb von PROFINET
 - durch Netzwerk Konfigurationssoftware des Controllers (PN IO-Supervisor)
- Optional möglich (z. B. für Betrieb ohne PN IO-Supervisor bei Inbetriebnahme)
 - Bedientaster und Display an der IS1 9441 CPU.
 - o BOOTP Server (optional nur bei 9441 CPU)
 - IS1+ Webserver
 - o IS1+ Detect Tool (nur mit 9442 CPU)

PROFINET Namenskonventionen

- Beschränkung auf 127 Zeichen insgesamt (Buchstaben "a" bis "z", Ziffern "0" bis "9", Bindestrich oder Punkt)
- Ein Namensbestandteil innerhalb des Gerätenamens, d. h. eine Zeichenkette zwischen zwei Punkten, darf max. 63 Zeichen lang sein.
- Keine Sonderzeichen wie Umlaute, Klammern, Unterstrich, Schrägstrich, Blank etc. Der Bindestrich ist das einzige erlaubte Sonderzeichen.
- Im Gerätenamen dürfen keine Großbuchstaben verwendet werden.
- Der Gerätename darf nicht mit den Zeichen "-" oder "." beginnen und auch nicht mit diesem Zeichen enden
- Der Gerätename darf nicht mit Ziffern beginnen.
- Der Gerätename darf nicht die Form n.n.n.n haben (n = 0...999).
- Der Gerätename darf nicht mit der Zeichenfolge "port-xyz-" beginnen (x,y,z = 0...9).



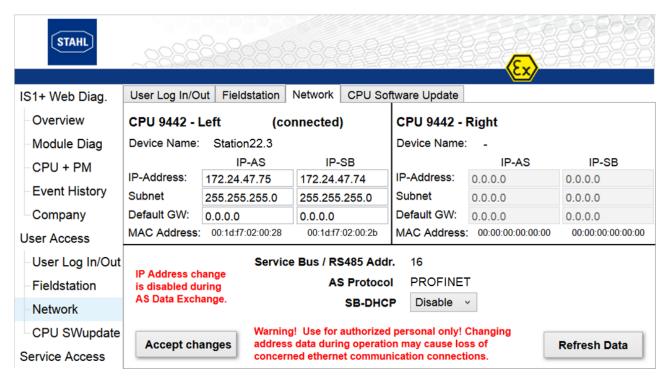
Kopplungsbeschreibung PROFINET

2.9.3.2 IS1+ Detect

Mittels des Tools 'IS1+ Detect' kann eine Liste der physikalisch über Ethernet erreichbaren IS1+ Feldstationen mit 9442 CPU erstellt werden und die bisher eingestellten IP Adressen der gefundenen Stationen angezeigt werden. Dies gilt auch für IS1+ Stationen welche außerhalb des über IP adressierbaren Netzwerk Adressbereiches liegen.

Bei Bedarf können die IP-SB Adressen über das Tool verändert werden, so dass diese nachfolgend im adressierbaren IP Adressraum des Netzwerkes liegen. Damit sind die IS1+ Stationen über die integrierten Web Server erreichbar.

Kopplungsbeschreibung PROFINET


2.9.3.3 IS1+ Webserver

Die Einstellung der IP-AS Adresse für die PROFINET Schnittstelle sowie der IP-SB Adresse kann optional über den Webserver der 9442 CPU erfolgen.

Bei redundanten IS1 CPUs werden die Adressen IP-AS, IP-SB sowie die Device Namen beider CPUs (linkeund rechte CPU) im IS1+ Webserver angezeigt wobei der Web Server mit einer der beiden CPUs verbunden ist (connected).

Die IP-SB sowie IP-AS Adressen können mit gültigem User Login nur von der CPU verändert werden, mit welcher der Webserver aktuell verbunden ist. Eine Änderung ist nur möglich, wenn sich die IS1 CPU nicht im DataExchange mit einem AS befindet und DHCP disabled ist.

Eine bestehende Verbindung zum Webserver wird nach einer Änderung der IP-SB geschlossen und muss zu der geänderten IP-SB Adresse neu geöffnet werden.

Kopplungsbeschreibung PROFINET

2.10 Systemanlauf

Nach Power On wird der gesamte IS1+ interne Datenbereich der Output Register mit dem Wert 0x8000 initialisiert. Alle Ausgabesignale verbleiben damit in Sicherheitsstellung. Die restlichen Datenbereiche werden mit 0x0000 initialisiert.

Die IS1+ CPU verbleibt im Zustand "Data Exchange verlassen", solange bis der zyklische Data Exchange vom IO Controller gestartet wird.

Die Ausgabesignale verbleiben so lange in Sicherheitsstellung, bis gültige Ausgabedaten (IOPS=Good) von den AS geschrieben werden.

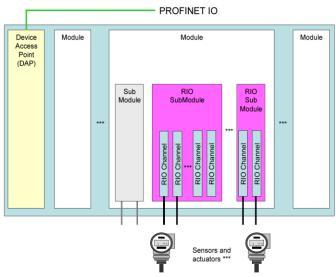
Das Anlaufverhalten der zyklischen Kommunikation zwischen einem PROFINET Controller und einem PROFINET Device (IS1+) ist genormt und wird vom PN Controller automatisch abgewickelt. Während des Anlaufvorganges tauschen PN Controller und IS1+ CPU Informationen über Datenblocklänge, Aufbau der Datenblöcke (Aufteilung in Module), Parameter, aus.

Bei einem Tausch von IO-Modulen während des Betriebs werden nach Ziehen und dem Stecken eines IO-Moduls vom gleichen Typ die Modulparameter automatisch von der IS1+ CPU zum IO-Modul übertragen und es erfolgt ein automatischer Wiederanlauf des IO-Moduls -> Hot Swap IO-Modul.

Ausnahme Modul TIM R 9480/..: Der Kalibrierwert bei 2 Leiter Schaltung ist im IO-Modul gespeichert. Bei Modultausch ist ein neuer Abgleich erforderlich.

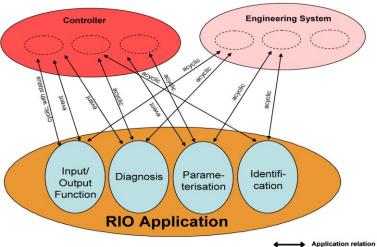
Kopplungsbeschreibung PROFINET

2.11 PROFINET Funktionen


Die Gerätebeschreibung erfolgt bei PROFINET per **GSDML** (Generic Station Description Markup Language) und geht von der Beschreibungstiefe wesentlich über die Möglichkeiten der PROFIBUS GSD hinaus. Die GSDML basiert auf XML. Mit einem XML-Schema steht eine datenbankartige Datenstruktur zur Verfügung.

Damit ergibt sich im Vergleich zu allen bisher mit IS1 realisierten AS Protokollen eine erweiterte und komfortablere Systemintegration. Vielfältige Details der in IS1+ enthaltenen Funktionen und 'Application Relations (AR)' sind in der GSDML beschrieben und können damit vom Engineering System automatisiert genutzt werden.

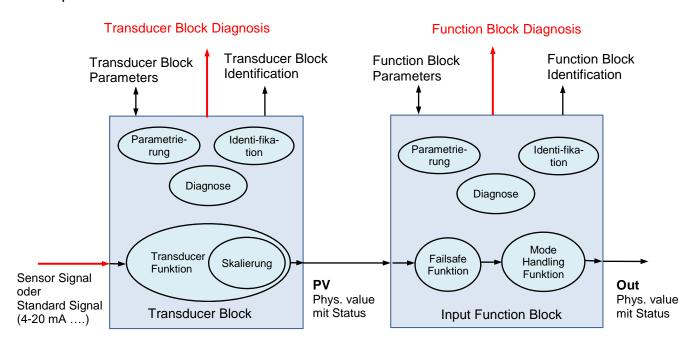
Von der PNO wird das Tool 'PROFINET XML Viewer' für PNO Mitglieder zur Verfügung gestellt, welches eine komfortable Darstellung von GSDML Datei Inhalten ermöglicht.


Die Adressierung wurde bei PN um eine Ebene gegenüber PROFIBUS erweitert.

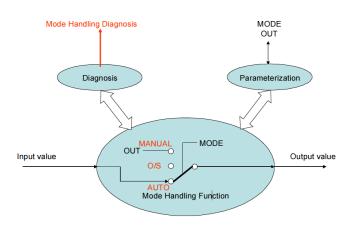
Ein Modul kann logische Submodule enthalten. Jedes Submodul kann eine Gruppe von Signalen enthalten. Bei IS1+ nutzen wir dies um z.B. bei einem AIM ein Submodul mit 8 AI Signalen und weitere Submodule mit HART Variablen abzubilden. Damit kann die zyklische Übertragung von HART Variablen zum AS optional bei Bedarf konfiguriert werden.

2.12 RIO Profil Funktionen

Signalverhalten, Datenformate und Parameter von DI, DO, AI und AO Signalen werden von IS1+ gemäß PNO Profil 'PROFINET RIO for PA' Doc. 3.232 abgebildet.


Gerätefunktionen sind mittels Transducer- und Function Blöcken abgebildet welche teilweise ähnlich der Definitionen der PROFIBUS PA Spezifikation sind.

Kopplungsbeschreibung PROFINET

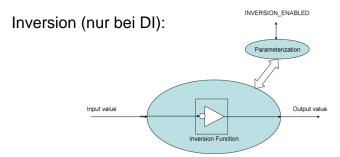

Beispiel: Al

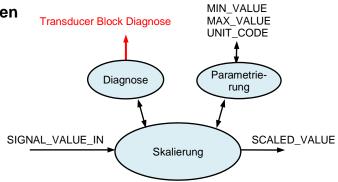
2.12.1 Mode Handling

Achtung!

Mode Handling ist für alle Signale vorbereitet, wird von der 9442 CPU derzeit nicht unterstützt.

Name	Parameter	Beschreibung
AUTO	Default	In Betrieb. Signal ist verfügbar und wird zyklisch aktualisiert.
MANUAL	Notarinamental	Signal mit Status kann über den Parameter 'Out' geschrieben werden *1)
O/S (out of service)	Not supported	Außer Betrieb. Keine Diagnose Alarme. Status = Bad, device passivated


^{*1)} Das Beschreiben von RIO for PA profilkonformen FB Parametern wie z.B. Parameter 'Out' über Datensätze ist in IS1 vorbereitet, wird jedoch von aktuellen Tools derzeit noch nicht unterstützt.


Kopplungsbeschreibung PROFINET

2.12.2 Signal Invertierung

2.12.3 Skalierung von Al und AO Signalen

Mit der Skalierungsfunktion kann ein standard Signal (z.B. 4 – 20 mA) in ein Signal mit beliebiger physikalischer Einheit (z.B. m3/h) umgerechnet werden.

Feste Skalierung (Default)

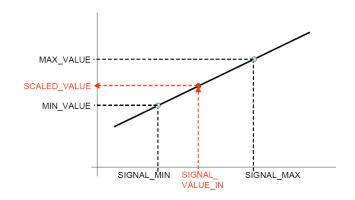
Bei allen Einstellungen von UNIT_CODE **außer** 'Textual Unit definition' wie z. B. mA, °C, mV, Ohm, % ... werden die Skalierungsparameter in der IS1+ CPU intern fest vorgegeben und auf die gewählte Unit skaliert.

-> Eingaben bei MIN_VALUE, MAX_VALUE und UNIT_TEXT haben in diesem Fall keine Wirkung.

Freie Skalierung:

Eine freie Skalierung über die Parameter MIN_VALUE und MAX_VALUE ist möglich, wenn der Parameter UNIT_CODE = 1995 '**Textual Unit definition** 'eingestellt wird.

In diesem Fall kann über den Parameter UNIT_TEXT ein beliebiger UNIT String zugeordnet werden. Die Einstellungen von SIGNAL_TYPE bzw. SENSOR_TYPE haben Einfluss auf den Nennwert des Messbereichs (0% und 100%) auf welchen sich die Skalierung bezieht.


Name	Beschreibung	Тур	
MIN_VALUE	Der physikalische Wert bei 0% des Eingangssignals (z.B. 4mA, 0V,).	Floor	
MAX_VALUE	Der physikalische Wert bei 100% des Eingangssignals (z.B. 20mA, 10V,)	Float	
UNIT_CODE	Code für die pysikalische Einheit (EU = Engineering Units)	INT16	
UNIT_TEXT	Beliebiger UNIT String. Dieser wird vom AS nur verwendet, wenn UNIT_CODE = 1995 (Textual Unit definition)	String 32	
SIGNAL_VALUE_IN	Digitaler Wert des physikalischen Messwertes mit Status	INT16	
SCALED_VALUE	Digitaler Wert des skalierten physikalischen Messwertes mit Status	Float+ Status	
SIGNAL_MIN	Oberer (100%) und unterer (0%) Nennwert des Messbereichs des standard Signals, abhängig von dessen Typ (SIGNAL_TYPE bzw.		
SIGNAL_MAX	SENSOR_TYPE). Beispiel 420mA: signal SIGNAL_MIN = 4 und SIGNAL_MAX = 20. Siehe <u>Datenwortaufbau der I/O - Module</u>	-	

Kopplungsbeschreibung PROFINET

Skalierungs Funktion:

 ${\tt SCALED_VALUE = (SIGNAL_VALUE_IN-SIGNAL_MIN)} \\ \underline{\frac{(\mathsf{MAX_VALUE-MIN_VALUE)}{(\mathsf{SIGNAL_MAX-SIGNAL_MIN)}}} \\ + \mathsf{MIN_VALUE} \\ \underline{}$

Bei AO Signalen wird die Funktion invers verwendet.

ІОМ Тур	Messbereich	0% (SIGNAL_MIN)	100% (SIGNAL_MAX)	Hinweis
AIM, AIMH 9460/, 9461/	0-20 mA	0	20	
AOM , AOMH 9465/ , 9466/ AUMH, UMH 9468/, 9469/	4-20 mA	4	20	
	Temperatur	-	-	nur °C oder °F
	Poti in Ohm 500 R	0	500 R	
	Poti in Ohm 2K5	0	2K5	
TIM 9480/ , 9481/ , 9482/	Poti in Ohm 5K	0	5K	
	Poti in Ohm 10K	0	10K	
	Poti in %	0	100%	
	0 100 mV	0	100 mV	
alle DIM mit Frequenzmessung	1 Hz – 1 kHz	0	1000 Hz	
(9470/3x im kompatiblen Mode):	x – 20 kHz	0	20000 Hz	
	0,1 Hz – 600 Hz	0	600 Hz	100% = 400 Hz in I.S.Wizard + DTM
DIOM 9470/3x, 9471/35, 9472/35 (IS1+)	1 Hz – 3 kHz	0	3000 Hz	100% = 2 kHz in I.S.Wizard + DTM
	1 Hz - 20 kHz	0	20000 Hz	

Kopplungsbeschreibung PROFINET

Beispiele für gängige UNIT Codes:

UNIT	UNIT_CODE	Hinweis
K	1000	
°C	1001	
°F	1002	
Hz	1077	
kHz	1081	
bar	1137	-
mbar	1138	
mA	1211	
V	1240	
Ω	1281	
kΩ	1284	
		Eine beliebige Unit kann über den Parameter UNIT_TEXT als ASCII Text zuge- ordnet werden. Dieser String wird vom AS nur verwendet, wenn UNIT_CODE = 1995 (Textual Unit definition). Über die Parameter MIN_VALUE und MAX_VALUE ist der Umrechnungsfaktor anzugeben. Die Verwendung des 'Visible exchange formates' (PNO Doc. 3.512 sowie ISO/IEC 10646) wird empfohlen.
Textual Unit definition	1995	Beispiele Visible exchange format:

2.12.4 Failsafe Funktion

Parameter Name	Auswahl				
	AI	AO	DI / DO		
	freeze (USE_LAST_VALID_VALUE)				
FAILSAFE_TYPE	-10%, 0%, 100%,	-10% (nur bei live Zero) 0%, 100%, 110%	0 1		
FAILSAFE_TIME	IS1 global einstellbar über CPU Parameter: Failsafe time output modules (x100 ms)				

Kopplungsbeschreibung PROFINET

2.12.4.1 Verhalten der Eingabesignale im Fehlerfall

Kann durch eine Störung (Kurzschluss, Drahtbruch, Baugruppendefekt ...) kein gültiger Signalwert gebildet werden, so wird ein Alarm zum AS übertragen sowie eine Diagnoseinformation erzeugt welche vom AS sowie dem Engineering System gelesen werden kann. Trotz bestehender Störung werden weiterhin zyklische Daten einschließlich Signal Status zum AS übertragen. Die Eingangssignale der I/O Module werden gemäß der Einstellungen von Failsafe Function in den sicheren Zustand gebracht und der Fehler im Signalstatus angezeigt.

2.12.4.2 Verhalten der Ausgabesignale im Fehlerfall

Kommunikationsfehler zwischen Host und IS1+ Feldstation:

Der zyklische Datenverkehr zwischen PROFINET Host und IS1+ wird in der IS1+ CPU überwacht. Bei einem Ausfall der zyklischen Kommunikation zum PROFINET controller oder wenn die Ausgabedaten vom PROFINET controller als ungültig gekennzeichnet werden (IOPS = Bad), werden die Ausgänge der I/O Module gemäß den Einstellungen der Parameter 'Failsafe Function' in den sicheren Zustand gebracht.

Kommunikationsfehler zwischen CPU und Output Modul:

Auf den Ausgabe Modulen befinden sich Watchdog - Schaltungen, welche die Datenübertragung zwischen der CPU und den Ausgabe Modulen überwachen. Bekommt ein Ausgabe Modul länger als T_{Mod} (Parameter ´Failsafe time output modules´) keine gültigen Daten übermittelt, werden die Ausgänge des Moduls gemäß der Einstellungen von Failsafe Function in den sicheren Zustand gebracht. T_{Mod} ist als CPM Parameter ´Failsafe time output modules´ global für eine IS1+ Feldstation parametrierbar im Bereich 100 ms bis 25,5 Sek. (Defaultwert: 100 ms).

Signalstatus

Abhängig vom CPU Parameter 'Ignore Output Signal Status' können Ausgabesignale mit Signalstatus ungleich = OK gemäß den Einstellungen von Failsafe Function in den sicheren Zustand gebracht werden. Siehe Analog Format mit Status gemäß PI Spezifikation

2.13 Abbildung Modul Version

CPU	Revision	STAHL	PN -	Beispiel	
CFU	Revision	STARL		STAHL	PN
alle	HW- Rev.	Rev. A, B, C	1, 2, 3,	Rev. G	7
9441	EW Boy	uv-wx	V uv.wx.yz	02-40	V2.4.0
9442	FW- Rev.	uv-wx	V u.v.wx	10-07	V1.0.7

Kopplungsbeschreibung PROFINET

3 Datenverkehr

3.1 Parametrierung

3.1.1 CPU Parameter

Parameter Group	Parameter	Defaultwert	Auswahl
CPU parameter	Failsafe time output modules (x100 ms) *1)	1	Unsigned 8 (1 - 255)
	PM Redundant *2)	No	No Yes
	Ignore Output Signal Status *3)	Enabled	0 = Disabled 1 = Enabled

^{*1)} siehe <u>Verhalten der Ausgabesignale im Fehlerfall</u>

^{*2)} nur 9442 CPU mit 9445 Power Module

^{*3) 9442} CPU ab FW V1.0.16 und GSDML-V2.33-Stahl-RIO9442-20190903.xml Details siehe Analog Format mit Status gemäß PI Spezifikation

Kopplungsbeschreibung PROFINET

3.1.2 IO-Modul Parameter

3.1.2.1 AIM / AIMH 9461

Modul Parameter

Parameter Group	Parameter	Defaultwert	Auswahl
Manufacturer specific	Input Filter	Medium	small medium big (50 Hz) big (60 Hz)
	Scan HART livelist (nur bei AIMH)	On	Off On

Signal Parameter

Manufacturer specific	Failsafe type	0 %	-10 % (4 mA only) 0 % 100 % freeze (initial value 0%) freeze (initial value 100%)
	Measurement range ac. NAMUR	No	No Yes
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False	True False
Output function	value	0	Wert in Engineering Unit
block channel x	status	128 (0x80) = OK	128 (0x80) = OK ungleich 128 = gestört
	MIN_VALUE	4	siehe <u>Skalierung von AI und AO Signalen</u> Eingegebene Werte werden nur
	MAX_VALUE	20	bei UNIT_CODE = 1995 beim Scaling verarbeitet.
Scaling channel x	UNIT_CODE	mA	1211 (mA) 1995 Textual Unit definition
	UNIT_TEXT	mA	Beliebiger UNIT String. Vom AS verwendet, wenn UNIT_CODE = 1995 (Textual Unit definition)
Config channel x	SIGNAL_TYPE	420 mA	020 mA 420 mA

Mapping HART Variablen - Mapping HART Variablen in Submodul 2

HART variable pos. 1	HART channel	Not used	07 Not used´		
	HART variable	2	1 - 4		
HART variable pos. 4 / 8	HART channel	Not used	07 Not used´		
	HART variable	2	1 - 4		

Kopplungsbeschreibung PROFINET

3.1.2.2 AUMH 9468

Modul Parameter

Parameter Group	Parameter	Defaultwert	Auswahl
Manufacturer specific	Input Filter	Medium	Small Medium Big (50 Hz) Big (60 Hz)
	Scan HART livelist	On	Off On

Signal Parameter

Signal Parameter			
Manufacturer	Failsafe type	0 %	-10 % (4 mA only) 0 % 100 % freeze (initial value 0%) freeze (initial value 100%)
specific	Measurement range ac. NAMUR *1)	No	No Yes
	I/O type	Input	Input Output
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False	True False
Output function	value	0	Wert in Engineering Unit
Output function block channel x	status	128 (0x80) = OK	128 (0x80) = OK < 128 = gestört
	MIN_VALUE	4	siehe <u>Skalierung von AI und AO Signalen</u> Eingegebene Werte werden nur
Scaling channel x	MAX_VALUE	20	bei UNIT_CODE = 1995 beim Scaling verarbeitet.
	UNIT_CODE	mA	1211 (mA) 1995 Textual Unit definition
	UNIT_TEXT	mA	Beliebiger UNIT String. Vom AS verwendet, wenn UNIT_CODE = 1995 (Textual Unit definition)
Config channel x	SIGNAL_TYPE	420 mA	020 mA 420 mA

^{*1)} Die Parameter 'Messber. grenzen gem. NAMUR' gelten nur für Input Signale! Bei umschaltbaren Al/AO Signalen ist der Parameter aber immer sichtbar und bei AO wirkungslos!

HART 4 / HART 8 - Mapping HART Variablen in Submodul 2

HART variable pos. 1	HART channel	Not used	07 Not used´		
	HART variable	2	1 - 4		
HART variable pos. 4 / 8	HART channel	Not used	07 Not used´		
	HART variable	2	1 - 4		

Kopplungsbeschreibung PROFINET

3.1.2.3 UMH 9469

Modul Parameter

Parameter Group	Parameter	Defaultwert	Auswahl
	Input Filter	Medium	Small Medium Big (50 Hz) Big (60 Hz)
Manufacturer	Scan HART livelist	On	Off On
specific	Namur Limits *1)	No	No Yes
	Input/Output Range	420 mA	020 mA 420 mA
	DI Pulse extension 1,2 s	Off	Off On

Signal Parameter

Signal Parameter			
Manufacturer	Failsafe type	0 %	-10 % (4 mA only) 0 % 100 % freeze (initial value 0%) freeze (initial value 100%)
specific	I/O type	Input	Input Output
	Signal Type	2 wire analog in/out	- 2 wire analog in/out - 3/4 wire analog in *2) - 2/3 wire digital in/out *2)
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False	True False
Output function	value	0	Wert in Engineering Unit
block channel x	status	128 (0x80) = OK	128 (0x80) = OK < 128 = gestört
Scaling channel x	MIN_VALUE	4	Eingegebene Werte werden nur bei UNIT_CODE = 1995 beim
	MAX_VALUE	20	Scaling verarbeitet. siehe Skalierung von Al und AO Signalen
	UNIT_CODE	mA	1211 (mA) 1995 Textual Unit definition
	UNIT_TEXT	mA	Beliebiger UNIT String.

^{*1)} Der Parameter Namur Limits (Messbereichs Grenzen gem. NAMUR) ist nur bei Analogen Input Signalen wirksam!

^{*2) 3/4} wire analog in und 2/3 wire digital in/out sind nur für die Kanäle 4 bis 7 verfügbar.

Kopplungsbeschreibung PROFINET

HART 4 / HART 8 - Mapping HART Variablen in Submodul 2

Parameter Group	Parameter	Defaultwert	Auswahl
HART variable position 1	HART channel	Not used	07 Not used´
	HART variable	2	1 - 4
HART variable position 4 / 8	HART channel	Not used	07 Not used´
	HART variable	2	1 - 4

Kopplungsbeschreibung PROFINET

3.1.2.4 TIMR 9480

Modul Parameter

Parameter Group	Parameter	Default value	Value range / selection
Manufacturer specific	Input Filter	50 Hz	50 Hz 60 Hz Off (not recommended)
	Operation mode	8 inputs	8 inputs 2 inputs

Signal Parameter

Signal Faranietei	T	1	T
	Failsafe type	freeze	freeze (initialization value 0%) 0% *1)
	Connection	4 wire measure (Pot in Ohm)	2 wire measure (Pot in Ohm) 3 wire measure (Pot in %) 4 wire measure (Pot in Ohm)
Manufacturer specific	Sensor type	Pt100	Pt100 Pt500 Pt1000 Ni100 Ni500 Ni1000 Resistance (Pot) 10k Resistance (Pot) 5k Resistance (Pot) 2k5 Resistance (Pot) 500R Pt100 GOST M50 GOST M100 GOST Cu53 GOST Pt46 GOST Pt50 GOST
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False	True False
Output function	value	0	Wert in Engineering Unit
block channel x	status	128 (0x80) = OK	128 (0x80) = OK ungleich 128 = gestört

^{*1)} Im Fehlerfall wird 0% = Unteres Ende des Messbereiches des eingestellten Sensor Typs geliefert. (-273.1°C für Temperatur Eingänge)

Kopplungsbeschreibung PROFINET

Parameter Group	Parameter	Default value	Value range / selection	
	MIN_VALUE	-200	siehe <u>Skalierung von AI und AO Signalen</u> Eingegebene Werte werden nur bei UNIT_CODE = 1995 beim Scaling verarbeitet.	
	MAX_VALUE	850		
			Unit	erlaubter Typ
Scaling channel x	UNIT_CODE *1)	°C	1001 °C 1002 °F	alle Temperatur Sensoren
		Ω	1281 Ω 1284 kΩ	Resistance (Pot) 2 wire or 4 wire m. (Pot in Ohm)
		%	1342 %	Resistance (Pot) 3 wire measure (Pot in %)
		-	1995 Tex- tual Unit de- finition	All types except temp. sensors
	UNIT_TEXT	С	Beliebiger UNIT String. Nur ver wendet wenn UNIT_CODE = 1995 (Textual Unit definition)	

^{*1)} Achtung! Erlaubte Unit Codes sind abhängig vom Parameter 'Sensor Type' und bei Auswahl

'Resistance (Pot)' zusätzlich vom Parameter 'Connection'.
Der eingestellte Unit Code wird bei unzulässigen Kombinationen ignoriert und die default Unit mit zugehöriger default Skalierung für den gewählten Sensor Typ verwendet.

Kopplungsbeschreibung PROFINET

3.1.2.5 TIM mV 9481

Modul Parameter

Parameter Group	Parameter	Default value	Value range / selection
Manufacturer specific	Input Filter	50 Hz	50 Hz 60 Hz

Signal Parameter

oignai i arameter		I			
	Failsafe type	freeze	freeze (initialization 0% *1)	on value 0%)	
	Input signal	Balanced	Balanced Unbalanced		
Manufacturer specific	Sensor type	THC Type K	0100 mV THC Type B THC Type E THC Type J THC Type K THC Type N THC Type R THC Type S THC Type S THC Type T THC Type L THC Type U THC Type XK (L)		
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)		
Channel x alarm disabled	Channel alarm disabled	False	True False		
Outrout from ation	value	0	Wert in Engineering Unit		
Output function block channel x	status	128 (0x80) = OK	128 (0x80) = OK ungleich 128 = ge	estört	
	MIN_VALUE	-200	siehe <u>Skalierung von AI und AO Signalen</u> Eingegebene Werte werden nur bei UNIT_CODE = 1995 beim Scaling verarbeitet.		
	MAX_VALUE	1370			
			Unit	allowed Type	
Scaling channel x	UNIT_CODE	°C	1001 °C 1002 °F	alle THC Sensoren	
			1243 mV 1995 textual Unit definition	0100 mV	
	UNIT_TEXT	С	Beliebiger UNIT String. Nur wendet wenn UNIT_CODE = 1 (Textual Unit definition)		

^{*1)} Im Fehlerfall wird 0% = Unteres Ende des Messbereiches des eingestellten Sensor Typs geliefert. (-273.1°C für Temperatur Eingänge)

Kopplungsbeschreibung PROFINET

3.1.2.6 TIM 9482

Module parameter

Parameter Group	Parameter	Default value	Value range / selection
Manufacturer Specific	Operation mode	8 channel precise	8 channel precise 4 channel fast
	TC cold junction	Internal	Internal External 3 wire
	Type TC external cold junction I6-I7	PT100	PT100 PT1000 PT100 GOST

Signal parameter

Signal parameter	1		T
	Failsafe type	freeze	freeze (initialization value 0%) 0% *1)
	Connection	4 wire measure (Pot in Ohm)	2 wire measure (Pot in Ohm) 3 wire measure (Pot in %) 4 wire measure (Pot in Ohm) 4 wire measure (Pot in %)
Manufacturer specific	Sensor type	Pt100	Pt100 Pt500 Pt1000 Ni100 Ni500 Ni1000 Resistance (Pot) 10k Resistance (Pot) 5k Resistance (Pot) 2k5 Resistance (Pot) 500R Pt100 GOST M50 GOST M100 GOST Cu53 GOST Pt46 GOST Pt50 GOST O100 mV THC Type B THC Type B THC Type F THC Type K THC Type R THC Type R THC Type S THC Type S THC Type L THC Type U THC Type XK (L)
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False	True False
Output function	value	0	Value in Engineering Unit
Output function block channel x	status	128 (0x80) = OK	128 (0x80) = OK unequal 128 = disturbed

^{*1)} Im Fehlerfall wird 0% = -273.1°C für Temperatur Eingänge geliefert.

Kopplungsbeschreibung PROFINET

Parameter Group	Parameter	Default value	Value range / selection		
	MIN_VALUE	-200	See Scaling for AI and AO signals. Changed values are used for scaling in case of UNIT_CODE = 1995 only.		
	MAX_VALUE	1370			
			Unit	allowed Type	
	UNIT_CODE *1)	°C	1001 °C 1002 °F	all THC and temp. sensors	
		mV	1243 mV	0100 mV,	
Scaling channel x		Ω	1281 Ω 1284 kΩ	Resistance (Pot) 2 wire or 4 wire measure (Pot in Ohm)	
		%	1342 %	Resistance (Pot) 3 wire or 4 wire measure (Pot in %)	
		-	1995 textual Unit definition	All types except THC and temp. sensors	
	UNIT_TEXT	С	Any Unit string. In AS used if UNIT_CODE = 1995 (Textual Unit definition) only		

^{*1)} Achtung! Erlaubte Unit Codes sind abhängig vom Parameter 'Sensor Type' und bei Auswahl

´Resistance (Pot)´ zusätzlich vom Parameter ´Connection´.

Der eingestellte Unit Code wird bei unzulässigen Kombinationen ignoriert und die default Unit mit zugehöriger default Skalierung für den gewählten Sensor Typ verwendet.

Kopplungsbeschreibung PROFINET

3.1.2.7 DIM (9470/3x im kompatiblen Mode)

Modul Parameter

Parameter Group	Parameter	Default value	Value range / selection
-	-	-	-

Signal Parameter

	Failsafe type	0 %	0 1 freeze (initial value 0)
Manufacturer			freeze (initial value 1)
specific	Pulse extension	0 s	0 s 0.6 s 1.2 s 2.4 s
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False	True False
Output function	value	0	0, 1
block channel x	status	32 (0x20) = OK	32 (0x20) = OK ungleich 32 = gestört
Invert channel x	Inversion	False	True False

Counter Frequency 2 chan - Parameter Submodul 2

Count./Freq. config. chan. 14	Operation mode	Freq. 0-1 kHz / DI	Counter
	Counting event	Positive edge	Positive edge Negative edge
Count./Freq. config. chan. 15		S. O.	

	MIN_VALUE	0	siehe Skalierung von Al und AO Signalen Eingegebene Werte werden nur bei UNIT_CODE = 1995 beim Scaling verarbeitet.	
	MAX_VALUE	1000		
Scaling channel 14	UNIT_CODE	Hz	Unit	allowed mode
			1077 Hz 1081 kHz 1995 textual Unit definition	Counter Frequency
	UNIT_TEXT	Hz	Beliebiger UNIT String. Vom AS verwendet, wenn UNIT_CODE = 1995 (Textual Unit definition)	
Scaling channel 15		s. o.		

Kopplungsbeschreibung PROFINET

3.1.2.8 DIOM 9470/3x, 9471/35, 9472/35 (IS1+)

Modul Parameter

Parameter Group	Parameter	Default value	Value range / selection
-	-	-	-

Signal / Signal Pair Parameter

Signal / Signal Fall F	arameter			
Manufacturer specific	Failsafe type	0 %	0 1 freeze (initial value 0) freeze (initial value 1)	
	Pulse extension / Filter chan. x, x+1 *2)	0 s	0 s / Off 0,6 s / Small 1,2 s / Medium 2,4 s / Large	
	I/O type channel x, x+1		9470/3x	9471/35, 9472/35
		Input	Input Output	NAMUR Ini/ contact 3-wire Initiator PNP Output
Mode channel x	Mode	AUTO	AUTO (MANUAL - no (OUT OF SER	t supported) VICE – not supported)
Channel x alarm disabled	Channel alarm disabled	False True False		
Output function	value	0	0, 1	
block channel x	status	32 (0x20) = OK	32 (0x20) = C < 32 = gestör	
Invert chann.x, x+1	Inversion (nur bei DI Signalen)	False	True False	

Counter+Frequency 8 chan - Parameter Submodul 2

Count./Freq. config. chan. 8+9 chan. 10+11 chan. 12+13	Operation mode	Freq. 1 Hz - 3 kHz (0,05Hz/Bit)	0 = Counter 16 Bit 1 = Freq. 0,1 - 600 Hz (0,01Hz/Bit) 2 = Freq. 1 Hz - 3 kHz (0,05Hz/Bit) 3 = Freq. 1 Hz - 20 kHz (0,5Hz/Bit) 4 = Up/Down Counter 16 Bit 5 = Up/Down Counter 32 Bit 6 = Freq. 1 Hz - 20 kHz with direction
chan. 14+15	Counting event	Positive edge	Positive edge Negative edge

Scaling	MIN_VALUE	0	siehe <u>Skalierung von</u> Eingegebene We	erte werden nur
	MAX_VALUE	2000	bei UNIT_CODE = 1995 beim Scaling verarbeitet.	
chan. 8			Unit allow	allowed mode
chan. 9	UNIT_CODE	Hz	1077 Hz 1081 kHz 1995 textual Unit definition	Frequenz Counter 16 Counter 32 *1)
chan. 15	UNIT_TEXT	Hz		String. Vom AS n UNIT_CODE = nit definition)

^{*1)} Scaling parameter of fist channel of a pair are used for scaling.

^{*2)} Filter active for Frequency Measurement only, Pulse extension active for DI/Counter only

Kopplungsbeschreibung PROFINET

3.1.2.9 AOM / AOMH 9466

Modul Parameter

Parameter Group	Parameter	Default value	Value range / selection
Manufacturer specific	Scan HART livelist (nur bei AIMH)	On	Off On

Signal Parameter

Signal Parameter			
Manufacturer specific	cturer specific Failsafe type		-10 % (4 mA only) 0 % 100 % 110 % freeze
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled False		True False
Output function	value	0	Wert in Engineering Unit
Output function block channel x	status	128 (0x80) = OK	128 (0x80) = OK < 128 = gestört
	MIN_VALUE	4	siehe <u>Skalierung von AI und AO Signalen</u> Eingegebene Werte werden nur
	MAX_VALUE	20	bei UNIT_CODE = 1995 beim Scaling verarbeitet.
Scaling channel x	UNIT_CODE	mA	1211 (mA) 1995 Textual Unit definition
	UNIT_TEXT	mA	Beliebiger UNIT String. Vom AS verwendet, wenn UNIT_CODE = 1995 (Textual Unit definition)
Config channel x	SIGNAL_TYPE	420 mA	020 mA 420 mA

HART 8 - Mapping HART Variablen in Submodul 2

HART variable	HART channel	Not used	07 Not used
pos. 1	HART variable	2	1 - 4
HART variable	HART channel	Not used	07 Not used
pos. 8	HART variable	2	1 - 4

Kopplungsbeschreibung PROFINET

3.1.2.10 DOM

Modul Parameter

Parameter Group	Parameter	Default value	Value range / selection
-	-	-	-

Signal Parameter

Manufacturer specific	Failsafe type	0	0 1 freeze
Mode channel x	Mode	AUTO	AUTO (MANUAL - not supported) (OUT OF SERVICE – not supported)
Channel x alarm disabled	Channel alarm disabled (bei DOMR und DOMV nicht verfügbar)	False	True False (without test current) False
Output function block	value	0	0, 1
channel x	status	32 (0x20) = OK	32 (0x20) = OK < 32 = gestört

Signal Pair Parameter S0+1, S2+3, S4+5, S6+7

	Output 0 and 1 parallel		
Manufacturer specific		Outputs separate	Outputs separate Outputs parallel
	Output 6 and 7 parallel		

Kopplungsbeschreibung PROFINET

3.2 Datenwortaufbau der I/O - Module

3.2.1 I/O - Baugruppen analog

Analogsignale werden zwischen der IS1+ Feldstation und einem Automatisierungssystem im Float Format mit Status ausgetauscht. Die Umrechnung von und zu Gleitkommavariablen mit physikalischer Größe (siehe Skalierung von Al und AO Signalen) erfolgt in IS1.

AIM, AIMH (9460/..., 9461/..., 9468/..., 9469/...) 0 – 20 mA

Meßbereich	Interner D	Digitalwert	0/	Parameter:	D	Diagnose Mel-
0 – 20 mA	dezimal	Hex	%	Messbereichsgrenzen gemäß NAMUR		
> 23,518 mA >21 mA	*1)	*1)		Nein Ja		Kurzschluss
23,518 mA 21 mA	32511 29030	7EFF 7166	117,6% 105%	Nein Ja	Übersteuerungs- bereich	-
20 mA 10 mA 0 mA	27648 13824 0	6C00 3600 0	100% 50% 0%		Nennbereich	-
< 0 mA	0	0	0%			

4 - 20 mA

Meßbereich	Interner D	igitalwert	0/	Parameter:	D ' . l	Diagnose Mel-
4 – 20 mA	dezimal	Hex	%	Messbereichsgrenzen gemäß NAMUR	Bereich	dungen
>22,814 mA >21 mA	*1)	*1)		Nein Ja		Kurzschluss
22,814 mA 21 mA	32511 29376	7EFF 72C0	117,6% 106,25%	Nein Ja	Übersteuerungs- bereich	-
20 mA	27648	6C00	100%			
12 mA	13824	3600	50%		Nennbereich	-
4 mA	Ô	Ö	0%			
3,999 mA	-1	FFFF			Untersteuerungs-	-
3,6 mA	-691	FD4D	-2,5%	Ja	bereich	
2,4 mA	-2765	F533	-10%	Nein		
< 3,6 mA	*1)	*1)		Ja		Leitungsunter-
< 2,4 mA	.,	.,		Nein		brechung

^{*1)} Im Fehlerfall wird ein interner Status Code übertragen.

Messbereichsgrenzen gemäß NAMUR:

Die Grenze des Messbereiches zum Kurzschluss- und Leitungsunterbrechungsbereich kann über den Parameter 'Messbereichsgrenzen gemäß NAMUR' bei allen AIM gemäß obiger Tabelle gewählt werden. Bei 9468 AUMH gelten die Parameter 'Messber. grenzen gem. NAMUR' nur für Input Signale! Bei umschaltbaren AI/AO Signalen ist der Parameter immer sichtbar und bei AO wirkungslos!

Kopplungsbeschreibung PROFINET

Datenwortaufbau zyklische Analog Daten

			Baugrupp	e / Betriebsa	rt			
Daten	Byte	AIM 9460/.,	AIMH 9461		H 9468/ H 9469/	Sub- slot	Var. Typ	Signale
		8AI	8AI+8HV	8Al/8AO	8AI/8AO+8HV			
	1 – 5	AI0	AI0	AI0	AI0			
	6 – 10	Al1	Al1	Al1	Al1			Analoge
	11 – 15	Al2	Al2	Al2	Al2		Float 32	oder digitale- bei 9469
	16 – 20	Al3	AI3	Al3	Al3	1	+ Status	Eingangssignale Al0 – Al7
	21 – 25	Al4	Al4	Al4	Al4] '		A10 – A17
	26 – 30	AI5	AI5	AI5	AI5		DSARIO1	oder
	31 – 35	Al6	Al6	Al6	Al6			AO Readback
Ξ	36 – 40	AI7	AI7	AI7	AI7			
Input	1 – 4		HV-P1		HV-P1			HART Variablen übertragen auf Positionen P1 - P8
_	5 – 8		HV-P2		HV-P2			
	9 – 12		HV-P3		HV-P3			
	13 – 16		HV-P4		HV-P4	2	Float 32	
	17 – 20	-	HV-P5	-	HV-P5		Float 32	
	21 – 24		HV-P6		HV-P6			1 comonent i i c
	25 – 28		HV-P7		HV-P7			
	29 – 32		HV-P8		HV-P8			
	1 – 5			AO0	AO0			
	6 – 10			AO1	AO1			
=	11 – 15			AO2	AO2		Float 32	
호	16 – 20	_	_	AO3	AO3	1	+ Status	Analog Ausgangssignale
Output	21 – 25	_	_	AO4	AO4	,	D04D104	AO 0 – AO 7
U	26 – 30			AO5	AO5		DSARIO1	
	31 – 35			AO6	AO6			
	36 – 40			AO7	AO7			

Readback:

Bei allen als AO parametrierten Kanälen kann der ausgegebene Wert über das zugehörige AI Signal zurückgelesen werden (Readback). Bei Parametrierung eines Kanals als AI hat das zugehörige AO Signal keine Wirkung.

Datenaufbau 9469

Die Kanäle 4 bis 7 des UMH 9469 Moduls können mittels der Parameter 'Connection' sowie 'I/O type' umgeschaltet werden:

- 2 wire analog in/out
- 3/4 wire analog in
- digital in/out

Über Profinet werden davon unabhängig immer 5 Byte je Signal übertragen. Der Daten Typ DSDRIO1 wird bei 9469 bei Digitalwerten nicht verwendet. Hier gilt:

Parameter 'Connection' sowie 'I/O type'	Datenformat		
2 wire analog in/out	Float + Status (Analog Format DSARIO1)		
3/4 wire analog in			
Digital in/out	U32 + Status Beispiel: U32 = 16#0000_0001 = 1 Bei DO gilt: 0 = Aus, >= 1 = Ein		

Kopplungsbeschreibung PROFINET

3.2.1.1 Analog Format mit Status gemäß PI Spezifikation

Datentyp DSARIO1: (data type numerical identifier 0x105)

Value	Status							
Byte 1 – 4	Byte 5							
-	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0						
Float 32		Stat	us We	rt gem	äß PI		0	0

		Status	Wert		
Status	Mögliche Ursachen	(obere 6 Bit)	8 Bit	NE107	
GOOD_OK	-	32 0x20	128 0x80	Kein Fehler	
GOOD_MAINT_REQ	IOM_ALARM_BUS_PRIM, IOM_ALARM_BUS_RED, CHAN_DIAG_OVERTEMP	IOM_ALARM_BUS_RED, 41 104 N		Wartungsbedarf (M)	3
UNCERT_NoMAINT	CHAN_DIAG_UPP_LIM_EXCEED, CHAN_DIAG_LOW_LIM_EXCEED	30 0x1E	120 0x78	Außerhalb Spezifikation (S)	<u> </u>
	BAD_CONF_ERROR: IOM_ALARM_CONFIG				
DAD MAINTAI	BAD_DEV_FAILURE: IOM_ALARM_HW_ERR, IOM_ALARM_WRONG, CHAN_ALARM_ERR	9	36 0x24	Association (E)	X
BAD_MAINTAlarm	BAD_SENSOR_FAIL: CHAN_ALARM_SC (Short), CHAN_ALARM_LB (Line Break)		(0x25 bei DO = 1)	Ausfall (F)	
	BAD_OUT_OF_SERV				
	BAD_OUT_STATUS *1)				

*1) Die Wirksamkeit des Signalstatus von Ausgabe Signalen kann über den CPU Parameter ´Ignore Output Signal Status´ gewählt werden:

CPU Parameter Ignore Output Signal Status	Funktion
Disabled	Output Signale mit Signal Status ungleich OK gehen in Sicherheitsstellung und liefern Readback Status = Bad.
Enabled	Output Signale werden unabhängig vom Signal Status immer ausgegeben und gehen nur beim Verlust der zyklischen Verbindung (IOCS=Bad, WD_TIME_EXCEEDED) oder bei Device Failure und Config Error in Sicherheitsstellung. Der Readback Status ist unabhängig vom Signal Status und wird nur bei Signal- oder Modul Fehler = Bad.

Statusinformation liegt in den oberen 6 Bit des Status Byte. Bit 0 und Bit 1 sind bei analogen Signalen immer = 0. Bei DI und DO Signalen werden hier Signaldaten übertragen (siehe Daten Typ DSDRIO1), welche bei DO in das Bit 0 des Readback übertragen wird.

Status Information gemäß NAMUR NE 107 bietet dem Operator einen schnellen und einfachen Überblick über die Qualität eines Signals ohne Betrachtung der Fehlerursachen.

Das PI Statusformat (condensed status) unterstützt vorbeugende Wartungsmeldungen.

Details für das Wartungspersonal werden mittels Alarm- und Diagnosedaten übertragen.

Kopplungsbeschreibung PROFINET

TIM (9480/..., 9481/..., 9482/...)

Temperaturmessung (1 Digit = 0,1 °C)

Temperatur	Interner Digitalwert		Bereich	Diagnose Meldungen
Temperatur	Dezimal	hexadezimal	Bereien	Diagnose Melaungen
	*1)	*1)		Leitungsunterbrechung / Oberer Grenzwert überschritten
*2)	*2)	*2)		
1000 °C	10000	2710		
1 °C	10	000A		
0 °C	0	0	Temperatur Meßbereich	
- 0,1 °C	-1	FFFF		
-100 °C	-1000	FC18		
*2)	*2)	*2)		
	*1)	*1)		Unterer Grenzwert unterschritten / Kurzschluss

2 Leiter und 4 Leiter Widerstandsmessung Poti in Ohm 500 R ...10K (Modul 9480/..., 9482/..)

Messbereiche			Interner D	Interner Digitalwert		,	Diagnose Mel-	
500R	2K5	5 K	10 K	dezimal	hexa-de- zimal	%	Bereich	dungen
>588 R	>2,94 K	>5,88 K	>11,76K	*1)	*1)			Leitungs-unter- brechung
588 R	2,94 K	5,88 K	11,76 K	32511	7EFF	117,6%	Übersteue- rungsbereich	-
500 R	2K5	5 K	10 K	27648	6C00	100%		
250 R	1K250	2K5	5 K	13824	3600	50%	Nennbereich	-
0 K	0 K	0 K	0 K	0	0	0%		

3 Leiter und 4 Leiter Widerstand Stellungsmessung Poti in % 500 R ..10K (Modul 9480/.., 9482/..)

	Messbereiche Inte				Digitalwert			Diagnose Mel-
500R	2K5	5 K	10 K	dezimal	hexa-de- zimal	%	Bereich	dungen
>588 R	>2,94 K	>5,88 K	>11,76K	*1)	*1)			Leitungs-unter- brechung
	Stellung	g 100 %		27648	6C00	100%		
	Stellung 50 %			13824	3600	50%	Nennbereich	-
Stellung 0 %			0	0	0%			
< 50 R	< 250 R	< 500 R	< 1 K	*1)	*1)			Kurzschluss

0,02 R	0,1 R	0,2 R	0,4 R	Auflösung pro Digit

Hinweis: 9480 unterstützt keine 4 Leiter Leiter Widerstand Stellungsmessung in %

^{*1)} Im Fehlerfall wird ein interner Status Code übertragen.
*2) Der erfassbare Temperaturbereich ist abhängig vom parametrierten Eingangstyp (siehe Betriebsanleitung IS1)

Kopplungsbeschreibung PROFINET

0 ... 100 mV Messung (bei 9481/.., 9482/..)

Meßbereich	Meßbereich Interner Digitalwert		0/	Bereich	Diagnaca Maldungan
0 100 mV	Dezimal	Hexadezimal	%	bereich	Diagnose Meldungen
>117,6 mV	*1)	*1)			Oberer Grenzwert überschritten
117,6 mV	32511	7EFF	117,6 %	Übersteuerungsbereich	_
				Oberstederungsbereich	-
100 mV	27648	6C00	100 %		
50 mV	13824	3600	50 %	Nennbereich	-
0 mV	0	O	0 %		
-0,0036 mV	-1	FFFF		Untersteuerungsbereich	
-10 mV	-2765	F533	-10 %	(9481/)	-
-117,6 mV	-32511	8101	-117,6%	(9482/)	
<	*1)	*1)			Unterer Grenzwert unterschritten

^{*1)} Im Fehlerfall wird ein interner Status Code übertragen.

Kurzschluss kann bei Widerstands- und mV Messung nicht erkannt werden!

Ein optionaler Leitungsabgleich bei Verwendung der 2 Leiter Schaltung und TIM 9482/.. kann über die autimatische Kalibrierfunktion der 9482 Baugruppe erfolgen, siehe Betriebsanleitung 9482.

Datenwortaufbau zyklische Analog Daten TIM 9480, 9481, 9482

Daten	Byte	Baugruppe TIM 9480, 9481, 9482	Sub- slot	Var. Typ	Signale
	1 – 5	AI0			
	6 – 10	Al1			
	11 – 15	Al2		Float 32	
Input	16 – 20	Al3		+ Status	Analog
ď	21 – 25	Al4	1		Eingangssignale Al0 – Al7
_	26 – 30	AI5		DSARIO1	Alo – Ali
	31 – 35	Al6			
	36 – 40	AI7			

Kopplungsbeschreibung PROFINET

AOM, AOMH (9465/..., 9466/..., 9468/..)

0 - 20 mA

Meßbereich	Interner Digitalwert		%	Bereich
0 – 20 mA	dezimal	hexadezimal	70	Dereich
*1)	>30137	>75B9		
21,8 mA	30137	75B9	109%	
				Übersteuerungsbereich
20 mA	27648	6C00	100%	
10 mA	13824	3600	50%	Nennbereich
•	•	•		
0 mA	0	0	0%	
0 mA	< 0	< 0		

4 - 20 mA

Meßbereich	Meßbereich Interner Digitalwert		%	Bereich
4 – 20 mA	Dezimal	Hexadezimal	70	Bereich
*1)	>30759	>7827		
21,8 mA	30759	7827	111,25%	
				Übersteuerungsbereich
20 mA	27648	6C00	100%	
12 mA	13824	3600	50%	Nennbereich
4 mA	0	0	0%	
3,999 mA	-1	FFFF		
				Untersteuerungsbereich
0 mA	-6912	E500	-25%	
0 mA	< -6912	< E500		

*1): Das AOM versucht den Strom entsprechend dem Steuerwert weiter zu erhöhen. Abhängig vom Bürdenwiderstand wird hierbei jedoch die maximale Ausgangsspannung des AOM erreicht, wodurch eine weitere Erhöhung des Stromes nicht mehr möglich ist.

Sicherheitsstellung nach Power On:

Nach Power On der CPU wird in den internen Datenbereich der Output Signale der Wert -32768 (0x8000) als Kennung für die Sicherheitsstellung der Outputsignale eingetragen.

Die Output Signale verbleiben so lange in Sicherheitsstellung, bis das zugehörige Register mit einem gültigen Ausgabewert (<> -32768 (0x8000)) überschrieben wird.

Kopplungsbeschreibung PROFINET

Zyklische Analog Daten AOM 9465/..., AOMH 9466/...

	5.4	Betri	ebsart		Var.	0 11		
Daten	Byte	8AO	8AO+8HV	Subslot	Тур	Signale		
	1 – 5	AOR 0	AOR 0					
	6 – 10	AOR 1	AOR 1					
	11 – 15	AOR 2	AOR 2		Float 32			
	16 – 20	AOR 3	AOR 3	1	+ Status	Readback mit Status		
	21 – 25	AOR 4	AOR 4	'		AO 0 – AO 7		
	26 – 30	AOR 5	AOR 5		DSARIO1			
	31 – 35	AOR 6	AOR 6					
Input	36 – 40	AOR 7	AOR 7					
iliput	1 – 4		HV-P1					
	5 – 8		HV-P2					
	9 – 12		HV-P3					
	13 – 16		HV-P4	2	Float 32	HART Variablen übertragen auf		
	17 – 20	-	HV-P5		Float 32	Positionen P1 - P8		
	21 – 24		HV-P6					
	25 – 28		HV-P7					
	29 – 32		HV-P8					
	1 – 5	AO 0	AO 0					
	6 – 10	AO 1	AO 1					
	11 – 15	AO 2	AO 2		Float 32	Analoge Ausgangssignale		
Output	16 – 20	AO 3	AO 3	1	+ Status	AO 0 – AO 7		
Juipui	21 – 25	AO 4	AO 4	ı		Analog Format mit Status gemäß PI		
	26 – 30	AO 5	AO 5		DSARIO1	Spezifikation		
	31 – 35	AO 6	AO 6					
	36 – 40	AO 7	AO 7					

Kopplungsbeschreibung PROFINET

3.2.2 DIM, DIM+CF (9470/.. 9471/.. 9472/..)

Bei den Baugruppen 9470, 9471 und 9472 können ein Teil der verfügbaren 16 Kanäle optional als Digitaleingang (DI), Zähler- (C) oder Frequenzeingang (F) verwendet werden.

Durch Auswahl verschiedener Submodule kann bei der Konfigurierung der im zyklischen Datenverkehr übertragene Datenbereich gewählt werden:

Modul	Betriebsart		Input Daten	Output Daten	Submodul	Signaltypen
	DIM 16		16 DI + Status	-	1	DI mit Status
9470 /16-1. 9471 /16-1.	-	DIM 16 + 2CF	C14+15	Steuerregister C14, C15	2	Counter
			F14+15	-		Frequenz
	DI/DO 16		16 DI + Status	16 DO + Status	1	DI oder DO mit Status
9470/3x-16-xx 9471/35-16-xx 9472/35-16-xx		DI/DO 16+8CF	C8 - 15	Steuerregister C8 - C15	2	Counter
	-		F8 - 15	-	2	Frequenz

DI Signalzuordnung (Parameter 'Invertiere Eingang/Signal x = Nein'):

9470/	9471/	
I < 0,05 mA	-	Leitungsunterbrechung
I < 1,2 mA	U < 5 V	Signal = 0
I > 2,1 mA	U > 13 V	Signal = 1
R _L < 100 Ohm	-	Kurzschluss

Auch in den Betriebsarten mit CF (Zähler/Frequenz) werden die DI Signale im DI Datenbereich aktualisiert und sind somit auch in dieser Betriebsart als DI Signale nutzbar.

Daten Typ DSDRIO1:

Status						Wert		
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2						Bit1	Bit0	Funktion
	Status Wert gemäß PI						0	Signal = 0
siehe <u>A</u>	siehe Analog Format mit Status gemäß PI Spezifikation						1	Signal = 1

Signale und Status werden synchron und konsistent generiert und übertragen

Bit 0 mit dem Signalwert wird bei DO signalen auch im Fehlerfall im Readback zurückgegeben.

.

Kopplungsbeschreibung PROFINET

Daten

Daten	Byte	alle (947x/ Kompatibl	3x im	9471/35,	DIOM 9470/3x, 9471/35, 9472/35 (IS1+)		Тур	Anwendung		
		DIM	DIM +2CF	DI/DO	DI/DO +8CF	modul	,,			
	1		DI 0 -	- Status			UINT8			
	2		DI 1 -	- Status		1	RIO Data Type 6	DI Signale mit Status		
						·		21 Oigin	are min Grande	
	16			+ Status	T		DSDRIO1			
	1-3		C 14		C 8			Zähler		
	4-6		C 15		C 9		UINT16	16 Bit	Nicht aktuali- siert (= 0) wenn	
	7-9				C 10		+Status DSARIO2	Up/Down	Operation	
						2		Counter mode = 32 Bi	mode = 32 Bit	
	22-24				C 15					
Input	25-29				C 8, 9		UINT32		Nicht aktuali-	
	30-34				C 10, 11		+Status	Up/Down Counter 32	siert (= 0) wenn Operation	
	35-39 40-44	-		-	C 12, 13 C 14, 15		DSARIO4		mode = 16 Bit	
	45-49		\		C 14, 15					
	(7-11)		F 14		F 8		Float 32 +Status	Zähler und Frequenz Mes- sungen mit Skalierung Skalierung Zähler:		
	50-54									
	(12-16)		F 15		F 9					
							DSARIO1	16 Bit: 0% :	$= 0, 100\% = 2^{16}-1$ = 0, 100% = $2^{32}-1$	
	75-79		-		F 14			0_ 2 070		
	80-84				F 15			*1)		
	1			DO 0 -	- Status		UINT8			
	2			DO 1 -	- Status	1	RIO Data	DO 8:~~	ala mit Status	
		-	_			1	Type 6	DO Signale mit Status		
Output	16			DO 15	+ Status		DSDRIO1			
	1	-	C14,15 Start, Stop Reset	_	Reset C8-15	2	BitStr. 8	Steuerreg	ister für Zähler	
	2		Reserviert		Start/Stop C8-15					

^{*1)} Bei verwendung eines DI Paares in Betriebsart Up/Down counter oder Frequenzmessung mit Richtung, liefert die erste Float32 Variable des Paares den skalierten Messwert. Die zweite Float32 Variable liefert den Fehlercode 'Not a number. Die Parameter für die Skalierung der zweiten Float32 Variable haben in diesem Fall keine Funktion.

Zähler Steuerregister DIM+2CF:

Byte	Bit	Funktion	Zuordnung
	0	Reset Counter C14	0 = Run,
	1	Reset Counter C15	1 = Reset (Zähler = 0)
1	2	Start/Stop C14	0 = Zähler läuft
	3	Start/Stop C15	1 = Zähler steht
	4 - 7	Reserviert	-
2	0 - 7	Reserviert	-

Steuerregister DIOM+8CF

Byte	Bit	Funktion
	0	Reset Counter C8
1		
	7	Reset Counter C15
	0	Start/Stop C8
2		
	7	Start/Stop C15

Kopplungsbeschreibung PROFINET

Betriebsart 'Zähler'

Zählweise: Inkrementierend / dekrementierend mit Überlauf / Unterlauf

Zählereignis: Positive / Negative Flanke wählbar.

Verhalten im Fehlerfall: Halten letzter Wert (Initialisierungswert 0)

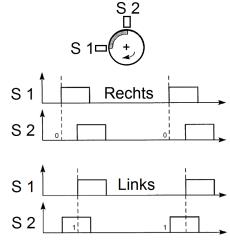
Diagnosen: Wertstatus und Kanaldiagnose

Reset: Rücksetzen des Zählregisters auf '0'

Start/Stop: Bei 'Stop' werden Eingangsimpulse verworfen.

Das Register wird nicht inkrementiert.

alle DIM mit Zähler (9470/3x im komp. Mode)	DIOM 9470/3x (IS1+)	Zählbereich	Zählereignis		
Zähler	16 Bit	UINT16	Inkrement bei Flanke		
-	Up/Down Counter 16 Bit	0 – 65535	Inkrement / Dekrement abhängig		
-	Up/Down Counter 32 Bit	UINT32 0 – 4.294.967.295	von Drehrichtung		


Zähl- bzw. Drehrichtungs-Erkennung:

Für Zähler und Frequenzmessungen mit Drehrichtungserkennung bilden jeweils zwei DI Eingänge ein Paar. Über den Phasenversatz zweiter Sensorsignale wird die Drehrichtung ermittelt.

Die mechanische Anordnung der Sensoren muss

so gewählt werden, dass sich jeweils zwei Pulse überlappen.

Betriebsart	Anwendung			
Up/Down Counter	Aufwärts oder abwärts zählen der Eingangsimpulse abhängig von der Drehrichtung			
Frequenz mit Richtung	Drehzahl und Drehrichtungserkennung für rotierende Maschinen			

Signalzuordnung in zyklischen Input Daten in Betriebsart Up/Down Counter oder Frequenz mit Richtung:

Input Daten	Anwendung
erstes DI Bit eines Paares	Digitaler Wert des ersten Eingangs.
zweites DI Bit eines Paares	Drehrichtung 0 = Rechts / vorwärts (Puls an erstem Eingang eines Paares kommt zu erst) 1 = Links / Rückwärts (Puls an zweitem Eingang eines Paares kommt zu erst)

Kopplungsbeschreibung PROFINET

Signale und Status bei Betriebsart 'Zähler':

Zähler werden beim Hochlauf des IO-Moduls auf '0'gesetzt.

Der Signalstatus wird mit 0x24 = Signal gestört initialisiert.

Über das Reset Bit im Steuerregister wird das Zählerregister auf '0' gesetzt und der Signalstatus auf 0x80 = Signal OK gesetzt.

Beim Auftreten von Fehlerereignissen (Kurzschluss, Leitungsunterbrechung, Busausfall...) wird der Signalstatus auf gestört gesetzt und bis zum nächsten Reset auf gestört gehalten. Eine Störung eines Zählvorganges ist somit über den Signalstatus erkennbar.

Beim Verlust des Data Exchange mit dem AS und Wiederkehr innerhalb der Haltezeit für Ausgabemodule oder bei CPU Redundanz Umschaltung wird der Zählvorgang nicht gestört.

Bei Betrieb eines Eingangspaares als Up/Down Counter oder Frequenz mit Richtung wird bei einem Signal Fehler eines der beiden Eingänge die Statusbits beider Eingänge auf gestört gesetzt.

Zur **Summierung von 16 Bit Zählern** muss das AS jeweils die Differenz zweier aufeinanderfolgender Abfragen aufaddieren. Zählerüber- oder unterlaufe sind entsprechend zu erkennen und zu berücksichtigen. Der AS Zyklus muss so gewählt werden, dass pro AS Zyklus max. ein Zählerüber- oder unterlauf vorkommt.

32 Bit Zähler mit Richtungseingang:

Wird bei einem 32 Bit Up/Down Counter eines Kanal Paares nur der erste Eingang angeschlossen und mit Impulsen angesteuert, so kann dieser Zähler auch ohne Richtungserkennung verwendet werden. Das Richtungsbit braucht dann in der SPS nicht ausgewertet zu werden. Die Fehlerüberwachung (LU/KS Erkennung) des freien zweiten Eingangs ist mit 'Aus' zu parametrieren. Bei offenem zweiten Eingang werden Impulse des ersten Eingangs inkrementiert (Aufwärts Zählung). Wird der zweite Eingang kurz geschlossen, werden Impulse des ersten Eingangs dekrementiert (Abwärts Zählung).

Betriebsarten 'Frequenzmessung'

Modul	Max. Anz. Signale je Modul	Betriebsart	Messmethode	Skalierung [Hz / Bit]	Auflösung [Hz]
		Frequenz 1 Hz - 1 kHz	Flankenmessung	0,05	+/- 0,05
alle DIM mit Frequenz-messung		Frequenz 20 Hz - 20 kHz	Torzeit 50 ms	1	+/- 20
(9470/3x im komp. Mode)		Frequenz 5 Hz - 20 kHz	Torzeit 200 ms	1	+/- 5
Komp. Mode)		Frequenz 1 Hz - 20 kHz	Torzeit 1 s	1	+/- 1
	8	Frequenz 0,1 - 600 Hz		0,01	+/- 0,01
DIOM 9470/3x,		Frequenz 1 Hz - 3 kHz		0,05	+/- 0,05
9471/35, 9472/35 (IS1+)		Frequenz 1 Hz - 20 kHz	Flankenmessung	0,5	+/- 0,5
	4 Paare	Frequenz 1 Hz - 20 kHz mit Richtung		0,5	+/- 0,5

Kopplungsbeschreibung PROFINET

Signalskalierung:

Ille DIM mit Frequenzmessung (9470/3x im kompatiblen Mode):							
Messbe	reiche	Einh	eiten	0/ +4\	Danaiah		
1 Hz – 1 kHz	x – 20 kHz	Dez.	Hex	% *1)	Bereich		
1,3 kHz 1,1 kHz	- 22 kHz	26000 22000	6590 55F0	130 % 110 %	Übersteuerungsbereich		
1 kHz	20 kHz	20000	4E20	100 %			
500 Hz	10 kHz	10000	2710	50 %	Nennbereich		
0 Hz	0 kHz	0	0	0 %			

DIOM 9470/3x, 9471/35, 9472/35 (IS1+)								
ı	Messbereiche		Einh	eiten	% *1)	Bereich		
0,1 Hz – 600 Hz	1 Hz – 3 kHz	1 Hz - 20 kHz	Dez.	Hex	/0 1)	Dereich		
> 655,34 Hz	> 3,276 kHz	-	65535	0xFFFF		Overflow		
655,34 Hz	3,276 kHz	-	65534	0xFFFE	164 %	Übersteuerungsbereich		
600 Hz	3 kHz	-	60000	0xEA60	150 %			
440 Hz	2,2 kHz	22 kHz	44000	0xABE0	110 %			
400 Hz	2 kHz	20 kHz	40000	0x9C40	100 %			
200 Hz	1 kHz	10 kHz	20000	0x4E20	50 %	Nennbereich		
0 Hz	0 kHz	0 kHz	0	0x0000	0 %			

^{*1)} Skalierung der Frequenzmessungen in IS1 DTM und I.S.Wizard

alle DIM mit Frequenzmessung außer 9470/3x	Phys 0 – 100% entspricht Digital 0 – 20000
DIOM 9470/3x (IS1+)	Phys 0 – 100% entspricht Digital 0 – 40000

Skalierung auf PROFINET siehe Skalierung von Al und AO Signalen

Signalverhalten im Fehlerfall: Halten letzter Wert (Initialisierungswert 0)

Diagnose: Signalstatus und Kanaldiagnose

Verhalten bei Frequenzüberschreitung:

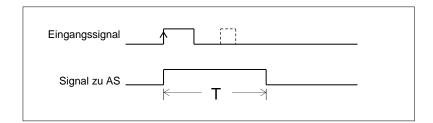
Bei Eingangsfrequenzen größer dem Maximum des eingestellten Messbereiches können nicht mehr alle Eingangsimpulse sicher erkannt werden. Es gehen Impulse bei der Auswertung verloren, wodurch der vom Modul ermittelte Messwert kleiner als die real vorhandene Eingangsfrequenz ist. Es erfolgt keine Diagnose Meldung.

Signal Filterung:

Eine Glättung des Signal Jitter der gemessenen Frequenzwerte kann bei DIOM 9470/3x per Parametrierung gewählt werden. Zusätzlich erfolgt eine Impulsverlängerung für die zugehörigen DI Signale.

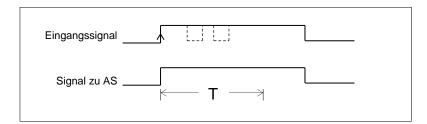
Parameter	Auswahl	Impulsverlängerung für DI Signale	Filterkonstante / Glättung für Frequenzmessungen
	0 s / Aus	0 s	Aus
Impulsverlängerung /	0,6 s / Klein	0,6 s	Klein
Frequenz Filter.	1,2 s / Mittel	1,2 s	Mittel
	2,4 s / Groß	2,4 s	Groß

Kopplungsbeschreibung PROFINET

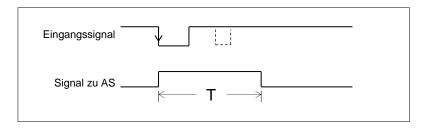

Impulsverlängerung:

Diese Funktion dient zum Verlängern von kurzen Impulsen. Damit kann z. B. eine kurze Betätigung eines manuellen Tasters (Zeitdauer ca. 10 ... 50 ms) auf eine bei der Parametrierung wählbare Zeit (T = 0,6 Sek., 1,2 Sek., 2,4 Sek.) verlängert werden.

Kurze Tasterbedienungen bzw. Pulse können damit vom AS auch bei langsameren Zykluszeiten der Anwendersoftware sicher erkannt werden.


Impulsverlängerung im nicht invertierten Betrieb:

(Parameter 'Invertiere Eingänge des Moduls'= Nein)


T = 0,6 Sek., 1,2 Sek., 2,4 Sek. (parametrierbar)

Pulse welche länger sind als die parametrierte Zeit T, werden nicht verlängert. Kurze Pulse während Ablauf der Zeit T werden unterdrückt.

Impulsverlängerung im invertierten Betrieb:

(Parameter 'Invertiere Eingänge des Moduls'= Ja)

Signalanzeige:

Bei DIOM mit Signal LEDs wird das verlängerte 'Signal zu AS' an den LEDs angezeigt.

Kopplungsbeschreibung PROFINET

3.2.3 DOM (9475/.., 9477/.., 9478/..)

Signalzuordnung

Daten	Byte	DOM 8	DOM 6 9477/12-06-12	DOM 4	Sub- modul	Тур
	1	Status_S0	Status_S0	Status_S0		UINT8
	2	Status_S1	Status_S1	Status_S1		RIO Data
	3	Status_S2	Status_S2	Status_S2		Type 6
Innut	4	Status_S3	Status_S3	Status_S3	1	. 7
Input	5	Status_S4	Status_S4	-	· I	DSDRIO1
	6	Status_S5	Status_S5	-		
	7	Status_S6	-	-		Status mit
	8	Status_S7	-	-		Readback
	1	DO 0	DO 0	DO 0		
	2	DO 1	DO 1	DO 1		
	3	DO 2	DO 2	DO 2		UINT8
Output	4	DO 3	DO 3	DO 3	1	RIO Data
Output	5	DO 4	DO 4			Type 6
	6	DO 5	DO 5	-		DSDRIO1
	7	DO 6	-	-		
	8	DO 7	-	-		

Readback:

Der ausgegebene Signal Wert kann über das Bit 0 des zugehörigen Status Bytes zurückgelesen werden.

Datentyp DSDRIO1: (data type numerical identifier 0x105)

Status							Wert					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		DOM	DOMR	DOMV	
	Status Wert gemäß PI			х	0	False	Ausgang ist hochohmig (Ak- tor = Aus)	Relaiskontakt = offen	Ventil geschlossen			
siehe <u>/</u>	siehe Analog Format mit Status gemäß PI Spezifikation		х	1	True	Ausgang wird gespeist (Aktor = Ein)	Relaiskontakt = geschlossen	Ventil offen				

X: Bit = 0 (Reserviert)

53

Kopplungsbeschreibung PROFINET

3.3 HART Variablen

HART Feldgeräte bieten zusätzlich zum analogen Prozesswert die Möglichkeit bis zu vier Prozessvariablen (HART Variablen HV) digital vom Transmitter zu lesen.

IS1 bietet die Möglichkeit solche HART Variable in den zyklischen Input Datenbereich von PROFINET abzubilden. Optional können in einem separaten Submodul acht HART Variable eines IS1+ HART Moduls (AIMH, AUMH, AOMH) zusätzlich zu den zyklischen Daten übertragen werden.

Dies kann bei der Konfiguration einer Feldstation optional ausgewählt werden.

3.3.1 Datenformat

HART Variable werden als IEEE Floating Point Zahlen übertragen (4 Byte).

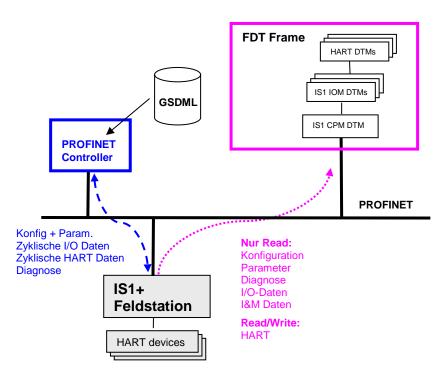
Kann eine HART Variable nicht gelesen werden (z.B. HART Gerät im Anlauf, nicht angeschlossen, defekt, HART Variable ist nicht vorhanden, ...) so wird der Wert 7F A0 00 00 (Not a Number) übertragen. Dies kann im AS zur Bildung eines Signalstatus der HART Variablen ausgewertet werden. Detaillierte Status- und Diagnoseinformationen der HART Feldgeräte sind über HART Management Systeme auswertbar.

3.3.2 Auswahl der HART Variablen

An einem HART Modul von IS1+ können bis zu 8 HART Feldgeräte angeschlossen werden. Da jedes HART Feldgerät bis zu 4 Variablen besitzen kann sind somit maximal 32 HART Variable je Modul in den HART Devices möglich.

Per Parametrierung kann die Zuordnung von 8 aus diesen 32 Variablen zu den Positionen P1 bis P8 im zyklischen Übertragungsbereich gewählt werden:

Parameter Name	Wertebereich	Funktion
Eingang Nr. HART Gerät für Pos. 1	0 7,	Auswahl der Kanal Nr. (Eingang / Ausgang Nr.) des HART Moduls an den das HART Feldgerät angeschlossen ist, welches auf Pos.1 übertragen werden soll. Bei Auswahl von 'Not Used' wird der Wert 'Not a Number' (7F A0 00 00) übertragen.
Eingang Nr. HART Gerät für Pos. 2	Nicht verwendet	Auswahl für Pos. 2
Eingang Nr. HART Gerät für Pos. 8		Auswahl für Pos. 8
HART Variable für Pos. 1		Auswahl der Variablen des HART Feldgerätes, welches auf Pos.1 übertragen werden soll.
HART Variable für Pos. 2	1, 2, 3, 4	Auswahl für Pos. 2
HART Variable für Pos. 8		Auswahl für Pos. 8



Kopplungsbeschreibung PROFINET

3.4 HART Maintenance über IS1 DTM

Zugriff auf HART Geräte über FDT Technologie und IS1 DTM wird unterstützt.

Konfiguration und Parametrierung der IS1+ Feldstation erfolgt über den PROFINET Controller mittels GSDML. Eine stand alone Konfiguration einer IS1+ Feldstation mit Download mittels IS1 DTM ohne PROFINET Controller wird nur von der 9442 CPU unterstützt.

Die I/O Module einer IS1+ Feldstation sind im PROFINET Controller sowie im FDT Projekt identisch zu konfigurieren. Nach Inbetriebnahme der PROFINET Kommunikation durch den Controller können die eingestellten Parameter der I/O Module mittels 'Upload' zu den IS1 DTMs übertragen und dort gemeinsam mit Diagnose Daten angezeigt werden.

Kopplungsbeschreibung PROFINET

3.5 Alarm- und Diagnosedaten

Modul Alarme

Error Type	Error Text	Help Text / Maßnahmen / Behebung	Stat (NE1	
301	IS1 configuration error from IO Controller!	Plug configured module type or change configuration of controller	Fail	Y
305	Slot address fail CPU	The CPU has detected an incorrect change of the slot address during operation> exchange CPU and send it back to STAHL service.	Ган	
306	Parameter 'Red. CPU' error.	Parameter 'Red. CPU = Yes' shall be enabled if red. CPU are plugged.	Maint	
307	Failure CPU-L	Check PM supply voltage. CPU left exchange required if OK.	Fail	X
308	Failure CPU-R	Check PM supply voltage. CPU right exchange required if OK.	Ган	
309	Temperature Alarm CPU / PM	Ambient temperature around the CPU or PM is out of spec. In case of overtemperature reduce ambient temperature or increase ventilation, shadowing	OoS	
310	Maintenace Request CPU-L	Exchange of CPU left recommended due to operating conditions.		
311	Maintenace Request CPU-R	Exchange of CPU right recommended due to operating conditions.	N 4 = 1 4	an
312	Maintenace Request PM-L	Exchange of PM left recommended due to operating conditions.	Maint	AL.
313	Maintenace Request PM-R	Exchange of PM right recommended due to operating conditions.		
314	PM overload	Reduce PM load!	OoS	
315	Failure PM-L	Check PM left supply voltage. PM left exchange required if OK.	F-:1	
316	Failure PM-R	Check PM right supply voltage. PM right exchange required if OK.	Fail	X
317	Parameter 'Red. PM' error.	Parameter 'Red. PM = Yes' shall be enabled if red. PM are plugged.		
318	Slot address error PM-L	address error PM-L The PM left has detected an incorrect change of the slot address during operation> Exchange PM and send it back to STAHL. The PM right has detected an incorrect change of the slot address during operation.		
319	Slot address error PM-R			S.
320	Socket backup memory disturbed.	System operation till next Power On/CPU Reset is possible. Socket exchange is required on next operation stop.		
402	Wrong module!	Plug configured module type or change configuration of controller Nur für die 9441 CPU gültig! Ab der 9442 CPU wird profinet-spezifisch bei AR-Etablierung nur ein Diff-Block gesendet, sobald mindestens ein gestecktes Modul von der im "Connect request" erwarteten Bestückung abweicht. Bei bereits etablierter AR wird beim Stecken eines nicht konfigurierten Modules der PROFINET-Alarm "Plug wrong submodule" (0x000a) gesendet.	Fail	×
403	No module!	Plug correct module type or exchange module. Nur für die 9441 CPU gültig! Ab der 9442 CPU wird profinet-spezifisch bei AR-Etablierung nur ein Diff-Block gesendet, sobald mindestens ein gestecktes Modul von der im "Connect request" erwarteten Bestückung abweicht. Wird bei bereits etablierter AR ein im Betrieb befindliches Modul gezogen, sendet die CPU einen Pull-Alarm (0x0003).		
404	Primary rail disturbed!	Check IOM, Rail communication and CPU	Maint	(Y
405	Redundant rail disturbed!	Check IOM, Rail communication and CPU	Maint	A
406	Hardware error	Exchange module		
407	Hardware disable outputs	Outputs are switched off by hardware disable input. Output data from AS is rejected. Check and clear reason for hardware disable.		X
409	Over temperature	Ambient temperature around the IOM is too high. Reduce ambient temperature or increase ventilation, shadowing	OoS	4
410	Slot address error IOM	The module has detected an incorrect change of the slot address during operation> exchange IOM and send it back to STAHL service.	Maint	Y

Kopplungsbeschreibung PROFINET

411	Maintenance request	Exchange of module recommended due to operating conditions.		
412	Cold junction error	Check Cold Junction error measurement on module or change module		
413	2 wire calibration failed	Repeat 2 wire calibration	Fail	
414	Maximum total output current of module exceeded. Channel 3 is switched off.	Reduce total loop current.	OoS	→
415	Wrong external wiring.	Check external signal wiring or signal type configuration.		
416	Wrong external supply (18 32V) or external signal wiring or signal type configuration.		Fail	X
417	Hardware disable outputs	Outputs are switched off by hardware disable input. Output data from AS is rejected. Check and clear reason for hardware disable.		

Kanal Alarme

Error Text	Help Text / Maßnahmen / Behebung		tus 107)
Kurzschluss	 Verbindung zwischen IO-Modul und Sensor/Aktor prüfen und Kurzschluss beseitigen Sensor / Aktor prüfen und bei Bedarf austauschen. 		3
Verbindung zwischen IO-Modul und Sensor/Aktor prüfrekte Verbindung herstellen. Sensor / Aktor prüfen und bei Bedarf austauschen.		Fail	

Signal Status siehe Analog Format mit Status gemäß PI Spezifikation

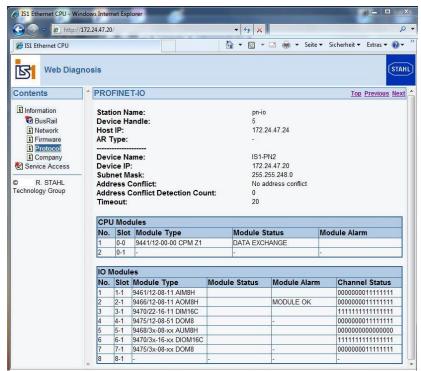
I&M Identification & Maintenance Functions

Die 9442 CPU unterstützt I&M0 bis I&M3

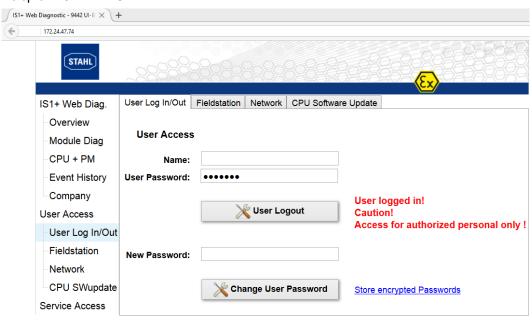
I&M0 (read only) enthält allgemeine Daten zum Gerät (DEVICE_MAN_ID, ORDER_ID, SERIAL_NUMBER, HARDWARE_REVISION, SOFTWARE_REVISION,).
Mit I&M1 bis I&M3 können anwenderspezifische Daten im Gerät gespeichert werden.

Default: gefüllt mit '0x20' (blank)

I&M 1	TAG_FUNCTION	32 Octets Visible String	For each device or module within a plant a unique label is necessary for the identification of its function or task. This may be a standard symbolic tag ("AKZ") out of a list or any other type of label defined by a configuration tool.
IO.IVI I	TAG_LOCATION	22 Octets Visible String	For each device or module within a plant a unique label is necessary for the identification of its location. This may be a standard location tag ("OKZ") out of a list or any other type of label defined by a configuration tool.
I&M 2	INSTALLATION_ DATE	16 Octets Visible String	The parameter INSTALLATION_DATE indicates the date of installation or commissioning of a device or module. YYYY-MM-DD hh:mm z. B. 1995-02-04 16:23
	RESERVED	38 Octets	
I&M 3	DESCRIPTOR	54 Octets Visible String	This comment field DESCRIPTOR allows customers to store any individual additional information and annotation. One source can be the tag list.



Kopplungsbeschreibung PROFINET


3.7 Webserver der IS1+ CPU

In den IS1+ CPUs ist ein Webserver integriert, welcher zusätzliche Diagnosemöglichkeiten für Inbetriebsetzung, Wartung und OEM Servicepersonal bietet. Ein Zugriff erfolgt über standard Web Browser.

Beispiel: 9441 PROFINET

Beispiel: 9442 PROFINET

Kopplungsbeschreibung PROFINET

Passwort und Zugangs-Konzept 9442 Web Server:

Die verschiedenen Menüpunkte des IS1+ Web Servers sind unterteilt in drei Gruppen:

Gruppe	Seite	Funktion
IS1+ Web Diagnostic	Diagnostic Overview Plugged Modules Configured Modules Backplanes HART Live List Module Diagnostic System Diagnostic AS- Protocol CPU Parameter License Event History Company	Standard Diagnose Informationen – Nur Read Rechte
User Access	User LogIn/Out Fieldstation Network CPU Software Update Time Sync SW Options	Netzwerk Einstellungen und Software Update der CPU - Ohne User Passwort: Nur Read Rechte - Mit User Passwort: Read- und Write Rechte wichtiger User Daten wie IP-Adresse, Device Name
Service Access	Service LogIn/Out	Service Informationen

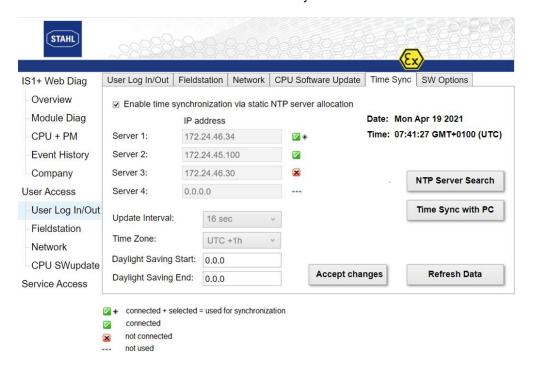
User LogIn/Out

Das User Passwort ist per Default eingestellt auf: R.STAHL

Nach erfolgreichem User-Login ist es vom Anwender zu verändern.

Wurde das Passwort vergessen, so kann mittels der Funktion 'Store encrypted Passwords' eine Datei erzeugt werden, aus welcher der R.STAHL Service das eingestellte Passwort rücklesen kann. Damit ist ein Login möglich und das verwendete Passwort ist nachfolgend vom Anwender erneut zu ändern.

Kopplungsbeschreibung PROFINET


3.8 NTP Zeitsynchronisation

Der OPC UA Server in der IS1+ CPU kann übertragene Daten mit einem aktuellen Zeitstempel versehen. Auch die Event History Daten im IS1+ Webserver erhalten einen Zeitstempel.

Eine korrekte Zeiteinstellung in der IS1+ CPU ist für eine sinnvolle Anwendung erforderlich.

Um die Uhrzeiteinstellungen aller Geräte einer Anlage konsistent zu halten ist eine zyklische Synchronisation der Uhren über einen NTP Server (Network Time Protocol) sinnvoll.

Die Einstellungen für die 9442 CPU ab Firmware Rev. V1.0.24 erfolgen im IS1+ Webserver im Bereich 'User Access' in der Lasche 'Time Sync'.

Enable time synchronization via static NTP server allocation

Wird die NTP-Zeitsynchronisation eingeschaltet (enabled) und optional mehrere gültige IP Adressen von NTP Servern im Netzwerk angegeben, so wählt die IS1+ CPU automatisch den genauesten der erreichbaren NTP Server für die Synchronisation aus.

Accept changes

Einstellungen können nur nach erfolgreichem User Login verändert werden und müssen mit 'Accept changes' bestätigt werden. Bei Änderung der Zeitzone ist aus Sicherheitsgründen ein erneuter User Login erforderlich, um weitere Daten zu ändern.

Refresh Data

Die Anzeige des Verbindungsstatus sowie von Datum und Uhrzeit wird mit 'Refresh Data' aktualisiert.

NTP Server Search

Das Netzwerk kann nach verfügbaren NTP Servern durchsucht werden. Eine Liste mit im Netzwerk gefundenen NTP Servern wird angezeigt. Abhängig von den Einstellungen (noquery aktiviert) der NTP Server können sich diese bei einem Suchvorgang aber auch verbergen, obwohl sie bei bekannter IP Adresse als NTP-Server fungieren können.

Kopplungsbeschreibung PROFINET

Time Sync with PC

Nach Powercycle müssen Datum und Uhrzeit in der 9442 CPU neu eingestellt werden.

Bei aktivierter Zeitsynchronisation via NTP erfolgt das automatisch.

Wenn die zyklische Zeitsynchronisation über NTP deaktiviert ist, können mit 'Time Sync with PC' einmalig Datum und Uhrzeit vom PC in die IS1 CPU übertragen werden.

Update Interval 16 sec, 1 min (default), 17 min.

Wählen Sie das minimale Aktualisierungsintervall für die Zeitsynchronisation über NTP (Networt Time Protocol)

Time Zone UTC – 12 UTC + 14

NTP überträgt den UTC-Zeitcode (Universal Time Coordinated), der weltweit eindeutig ist. Wählen Sie ihre lokale Zeitzone, um die korrekte Ortszeit anzuzeigen.

Sommerzeit Einstellungen

Daylight Saving Start => m.w.d Daylight Saving End => m.w.d

m = Monat [1, 12]

w = Woche im Monat [1, 5]

d = Tag der Woche [0, 6] mit 0 = Sonntag

Sommerzeit Offset: +1h

Die Sommer-/Winterzeit-Umstellung erfolgt jeweils um 02:00 Uhr

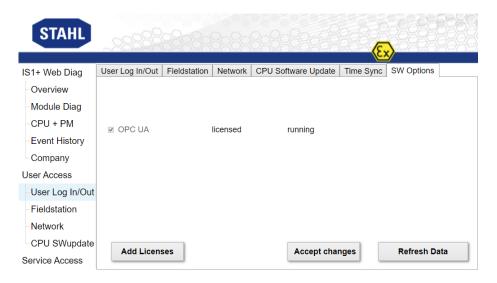
Hinweis: Wenn die Sommerzeiteinstellungen 0.0.0 oder nicht gültig sind, ist der Sommerzeit-Offset 0.

Beispiele:

Zeit Zone			Daylight Saving Time Start	Daylight Saving Time End
PST	Pacific Standard Time	UTC -8h	3.2.0	11.1.0
CET / MEZ	Central European Time	UTC +1h	3.4.0	10.4.0
IST	Indian Standard Time	UTC +5:30h	0.0.0	0.0.0
AWST	Australian Western Standard Time	UTC +8h	0.0.0	0.0.0

Genauigkeit der Uhr in IS1+ 9442 CPU ohne externe Zeitsynchronisation,

Abweichung pro Tag: typ. <1 sec. max. 10 sec,



Kopplungsbeschreibung PROFINET

3.9 OPC UA Server

Die IS1+ CPU 9442 kann ab Firmware Rev. V1.0.24 um einem OPC UA Server optional erweitert werden. Der OPC UA Server der IS1+ CPU ist als Grundeinstellung deaktiviert und kann bei Bedarf im IS1+ Webserver nach Eingabe eines User Logins (siehe Webserver der IS1+ CPU) auf der Seite 'SW Options' aktiviert werden.

Ohne Lizenz arbeitet der OPC UA Server im Demo Modus für 24 Stunden.

Details zum IS1+ OPC UA Server siehe Dokument Kopplungsbeschreibung OPC UA Server für IS1+ Feldstationen.

3.10 LED- und LCD- Anzeige der 9441 CPU

An der 9441 CPU einer IS1+ Feldstation können vor Ort der Betriebszustand sowie die Kommunikation auf dem PROFINET anhand der LED's sowie der LCD-Anzeige beurteilt werden. Die LCD-Anzeige ermöglicht zusätzlich die Anzeige der Signalwerte sowie Signal- und Modulalarme.

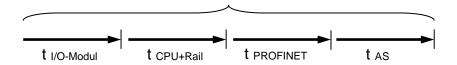
Details siehe Betriebsanleitung IS1 9441 CPU

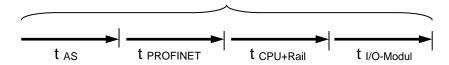
3.11 Online Verhalten der IS1+ Feldstation.

Online Konfigurations- und Parameter Änderungen werden von aktuellen PN IO Controllern für Geräte mit GSDML Parametrierung nicht unterstützt.

Es ist jedoch bereits eine Draft Spezifikationen der PNO verfügbar, welche solche zukünftigen Funktionen beschreibt:

• PROFINET IO Configure in Run Doc. No. 2.512




Kopplungsbeschreibung PROFINET

3.12 Übertragungszeit:

Gesamtverzögerung Input Signale (worst case):

Gesamtverzögerung Output Signale (worst case):

t _{I/O-Modul} max. Signalverzögerung siehe Betriebsanleitung der verschiedenen IS1+ I/O Module.

t CPU+Rail ca. 4 ms + Anzahl IO-Module * 1 ms

t profinet

Device Interval					
Minimum (default)	Optional *1)				
8 ms (9441) 4 ms (9442)	8 ms	16 ms	32 ms		

^{*1)} einstellbar im PROFINET Controller

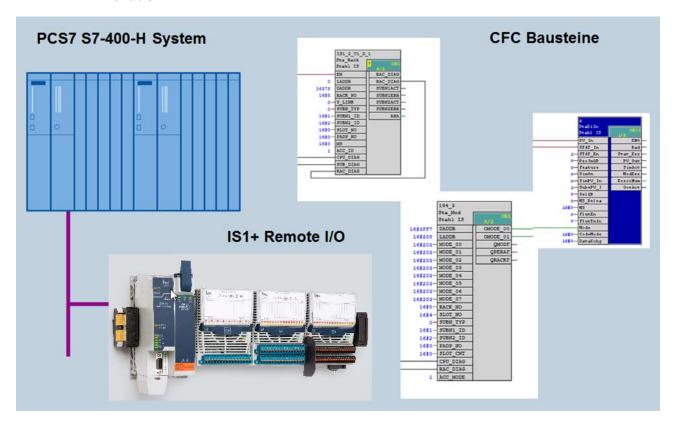
t AS AS Zyklus + weitere Verzögerungen im Automatisierungs System (AS)

Kopplungsbeschreibung PROFINET

4 APL Feldgerätebibliothek zur Anbindung an Leitsystem PCS7

Bei der Implementierung moderner, auf PCS 7 basierender Automatisierungsprojekte werden Sie häufig mit speziellen Herausforderungen konfrontiert, für die eine Standard PCS 7 Umgebung keine Lösung bietet. Die R. STAHL IS1+ PCS7 APL Feldgerätebibliothek ermöglicht eine einfache Anbindung von R. STAHL IS1+ Modulen an das Siemens Leitsystem PCS7 über PROFINET. Inhalt der Bibliothek sind PCS7 konform erstellte APL Bausteine, sowie eine Dokumentation in Englisch. Hierbei werden Standardfunktionen wie die automatische Verschaltung durch den Treibergenerator oder Assetmanagment unterstützt. Die PCS 7 Bausteine ermöglichen Ihnen, zusätzliche Fehlerquellen zu vermeiden, eigene Ressourcen zu

schonen und sich voll und ganz auf Ihr Automatisierungsprojekt zu konzentrieren.


Die APL Feldgerätebibliothek ist kompatibel bis PCS7 V9 und direkt bei Siemens in Karlsruhe zu beziehen. Kontakt und Support: function.blocks.industry@siemens.com.

Unterstützte Funktionen

- Einsatz von R. STAHL IS1+ in einem nicht redundanten S7-400 CPU System
- Einsatz von R. STAHL IS1+ in einem redundanten S7-400-H CPU System mit S2 Redundanz
- Modul und Kanalgranulare Diagnose
- Assetmanagment
- Treibergenerator
- HART Variablen

Kundennutzen

- Umfangreiche Bibliothek mit getesteten und bewährten Treiberbausteinen
- Einfache Kalkulation auf Basis von Fixpreisen
- Hotline & Support durch unser Spezialistenteam
- Dokumentation der Bausteine

Treiber für PCS7 V9 auf Basis IS1+ GSDML-V2.34-Stahl-RIO9442-20200427.xml unterstützt IS1+ CPU 9442 mit PROFINET S2 Redundanz.

Kopplungsbeschreibung PROFINET

5 Liste der Abkürzungen:

AS	Automatisierungssystem. (Automation System)		
AIM	Analog Eingabemodul (Analog Input Module)		
AIMH	Analog Eingabemodul + HART		
AUMH	Analog Universal Modul Al/AO mit HART		
SAIMH	Safety Analog Eingabemodul + HART (PROFIsafe)		
AOM	Analog Ausgabemodul (Analog Output Module)		
AOMH	Analog Ausgabemodul + HART		
DIM	Digital Eingabemodul (Digital Input Module)		
DIOM	Digitales Ein-Ausgabe Modul (Digital Input Output Module)		
DOM	Digital Ausgabemodul (Digital Output Module)		
DOMR	Digital Output Modul Relais		
DOMV	Digital Output Modul Ventile		
GSDML	General Station Description Markup Language		
HW	Hardware		
IOM	Allgemeine Bezeichnung für I/O - Modul		
IOC	Input Output Controller -> PROFINET Controller (logical view)		
IOD	PROFINET Device (z.B. IS1+ CPU 9442)		
MRP	Media redundancy protocol		
NAP	Network Access Point (z.B. IS1+ CPU 9442)		
PM	Power Module (Netzgerät)		
SW	Software		
SIL	Safety Integrity Level		
0.2	7 9 7		
SNMP	Simple Network Management Protocol		

Kopplungsbeschreibung PROFINET

6 Versionsveränderungen:

Version Kopplungs- beschreibung PROFINET	Erweiterungen / Änderungen	
V 2.00	Erste freigegebene Version	
V 2.02	Signal Typ von MIN_VALUE und MAX_VALUE geändert in Float	
V 2.03	HART Kommunikation über IS1 DTM ergänzt	
V 2.04	neues IS1+ IO-Modul 9482 TIM ergänzt	
V 3.01	Neue IS1+ CPU 9442 ergänzt. Neue IS1+ Module ergänzt. - 9469/35 UMH Z2 Ex n - 9471/35 DIOM Z2 Ex n - 9472/35 DIOM-24V Z2 Ex n Parameter PM 9445 Redundant ergänzt	
V 3.02	Beschreibung der Datenwortstruktur 9469 für Digital In/Out erweitert	
V 3.03	CPU Parameter 'Ignore Output Signal Status' zugefügt.	
V 3.04	Info zugefügt: Shared Device und Shared Input können nicht in Kombination mit System Redundanz S2 verwendet werden!	
V 3.05	Beschreibung Verhalten der Ausgänge im Fehlerfall erweitert.	
V 3.06	- Beschreibung für I/O-Modul Redundanz zugefügt. - Neue I/O-Module zugefügt: • 9477/34-04-11 DOMR 4 250VRel Z1 • 9478/35-08-11 DOMR 8 250VRel Z2 • 9478/32-08-02 DOMV 8 OD - Erweiterter Einstellbereich für SB/DP Adressschalter - OPC UA Server zugefügt - NTP Zeitsynchronisation zugefügt - APL Feldgerätebibliothek zur Anbindung an Leitsystem PCS7 ergänzt. - ab GSDML-V2.34-Stahl-RIO9442-20220303.xml: • Parameter Failsafe type = 0% für alle TIM zugefügt • Submodul 4HV für HART IOM zugefügt	
V 3.07	Kapitel 3.5 Alarm- und Diagnosedaten korrigiert: Modul Alarme 402 und 403 nur für die CPU 9441 gültig.	

7 Literaturhinweise

PROFINET Planungsrichtlinie PNO Doc. 8.061
PROFINET Montagerichtlinie PNO Doc. 8.071
PROFINET Inbetriebnahmerichtlinie PNO Doc. 8.081

Kopplungsbeschreibung PROFINET

8 Support Adresse

R. STAHL Schaltgeraete GmbH

Business Unit Automation Interface and Solutions

eMail: <u>support.automation@r-stahl.com</u>

Supportinformationen: http://www.stahl.de
Service Hotline IS1: +49 (7942) 943-4123
Telefax: +49 (7942) 943-40 4123

67